[1]
W. A. Abdullah, H. U. Ahmed, Y. M. Alshkane, D. B. Rahman, A. O. Ali, and S. S. Abubakr, The Possibility of Using Waste PET Plastic Strip to Enhance the Flexural Capacity of Concrete Beams, Journal of Engg. Research, ICRIE Special Issue, (2021).
DOI: 10.36909/jer.v9iICRIE.11649
Google Scholar
[2]
B. Mohammed, E. I. Yakubu, S. N. Mamman, M. Nda, A. A. Ayni, M. Zakari, and B. Kabir, The Effect of Aggregate Types on the Properties of Concrete, Path of Science, vol. 7, no. 12, p.5001–5012, (2021).
DOI: 10.22178/pos.77-3
Google Scholar
[3]
V. A. Okumu, S. M. Shitote, and W. O. Oyawa, Influence of Constituent Materials Properties on the Compressive Strength of in Situ Concrete in Kenya, Open Journal of Civil Engineering, vol. 7, p.63–81, (2017).
DOI: 10.4236/ojce.2017.71004
Google Scholar
[4]
E. Abbas and A. H. Al-zuhairi, Extended Finite Element Analysis of Reinforced Concrete Beams Using Meso-Scale Modeling, Association of Arab Universities Journal of Engineering Sciences, vol. 27, no. 1, p.19–29, (2020).
DOI: 10.33261/jaaru.2019.27.1.003
Google Scholar
[5]
M. W. Falah and R. J. Ghayyib, Evaluating the Effects of Using Superplasticizer RHEOBUILD® 600 on the Workability and Compressive Strength of Normal Concrete, Journal of University of Babylon, Engineering Sciences, vol. 26, no. 5, p.95–104, (2018).
Google Scholar
[6]
O. M. Ojo, Effect of Water Quality on Compressive Strength of Concrete, European Scientific Journal, vol. 15, no. 12, p.172–180, Apr. (2019).
DOI: 10.19044/esj.2019.v15n12p172
Google Scholar
[7]
Y. Cai and Q.-f. Liu, Stability of Fresh Concrete and Its Effect on Late-Age Durability of Reinforced Concrete: An Overview, Journal of Building Engineering, vol. 79, p.107701, (2023).
DOI: 10.1016/j.jobe.2023.107701
Google Scholar
[8]
J.F. Lamond, J.H. Pielert (Eds.), Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM STP 169D, ASTM International, West Conshohocken, PA, 2006.
DOI: 10.1520/stp169d-eb
Google Scholar
[9]
S. Panda, P. Sarkar, R. Davis, Effect of Water-Cement Ratio on Mix Design and Mechanical Strength of Copper Slag Aggregate Concrete, IOP Conf. Ser.: Mater. Sci. Eng. 936 (2020) 012019.
DOI: 10.1088/1757-899x/936/1/012019
Google Scholar
[10]
D.S. Wiyanti, T.D. Laksono, Analysis of the Effects of Superplasticizer Addition and Water Reduction in Concrete Mixture on Concrete Compressive Strength, Int. J. Eng. Technol. Manag. Res. 7 (6) (2020) 47–57.
DOI: 10.29121/ijetmr.v7.i6.2020.688
Google Scholar
[11]
A. Junaidi, R.D.H.M. Hariyanto, Effect of Adding Superplasticizer on High Initial Compressive Strength of High-Performance Concrete (HPC) Fc'= 36.62 MPa, Int. J. Eng. Technol. Manag. Res. 9 (10) (2022) 73–81.
DOI: 10.29121/ijetmr.v9.i10.2022.1241
Google Scholar
[12]
W. Li, Analysis of the Influence of Water-Cement Ratio on Concrete Strength, E3S Web Conf. 283 (2021) 01016.
DOI: 10.1051/e3sconf/202128301016
Google Scholar
[13]
B.S. Waziri, A. Mohammed, A.G. Bukar, Effect of Water-Cement Ratio on the Strength Properties of Quarry-Sand Concrete (QSC), Continental Journal of Engineering Sciences 6 (2) (2011) 16–21.
Google Scholar
[14]
H.-W. Chung, T. Subgranon, Y. Wang, H.D. DeFord, M. Tia, Evaluation of Pavement Concrete with Low Paste Volume Using Portland Limestone Cement, ACI Materials Journal 117 (2) (2020) 181–192.
DOI: 10.14359/51720304
Google Scholar
[15]
S.H. Chu, Effect of Paste Volume on Fresh and Hardened Properties of Concrete, Construction and Building Materials 218 (2019) 284–294.
DOI: 10.1016/j.conbuildmat.2019.05.131
Google Scholar
[16]
W. Piasta, B. Zarzycki, The Effect of Cement Paste Volume and w/c Ratio on Shrinkage Strain, Water Absorption and Compressive Strength of High-Performance Concrete, Construction and Building Materials, vol. 140, p.395–402 (2017).
DOI: 10.1016/j.conbuildmat.2017.02.033
Google Scholar
[17]
S. Kolias, C. Georgiou, The Effect of Paste Volume and of Water Content on the Strength and Water Absorption of Concrete, Cement and Concrete Composites 27 (2005) 211-216.
DOI: 10.1016/j.cemconcomp.2004.02.009
Google Scholar
[18]
T.I.M. Abdel-Magid, R.M. Hamdan, A.A.B. Abdelgader, M.E.A. Omer, N.M.R.A. Ahmed, Effect of Magnetized Water on Workability and Compressive Strength of Concrete, Procedia Engineering 193 (2017) 494-500.
DOI: 10.1016/j.proeng.2017.06.242
Google Scholar
[19]
M. Kajja, H. Bita, N. Taifi, A. Malaoui, Analytical and numerical study of rectangular reinforced concrete beam using robot structural analysis software, Materials Today: Proceedings (2023)
DOI: 10.1016/j.matpr.2023.07.344
Google Scholar
[20]
S. Marium Varghese, K. Kamath, S. Rasia Salim, Effect of concrete strength and tensile steel reinforcement on RC beams externally bonded with fiber reinforced polymer composites: A finite element study, Materials Today: Proceedings (2023).
DOI: 10.1016/j.matpr.2023.03.650
Google Scholar
[21]
A.A. Mansor, A.S. Mohammed, M.A. Mansor, Reinforced concrete beams capacity with various concrete compressive strengths, IOP Conference Series: Materials Science and Engineering 978 (2020) p.012036.
DOI: 10.1088/1757-899x/978/1/012036
Google Scholar
[22]
M. Kajja, N. Taifi, A. Malaoui, H. Bita, Assessing the structural performance of a reinforced concrete beam: The effects of simulated rotation angle utilizing robot structural analysis software, MethodsX 13 (2024) 102836.
DOI: 10.1016/j.mex.2024.102836
Google Scholar
[23]
R.A. More, S.K. Dubey, Effect of different types of water on compressive strength of concrete, International Journal on Emerging Technologies 5 (2) (2014) 40-50.
Google Scholar
[24]
N. T.R., S. Rangaswamy, S.M. Gopinath, B.C. Shanthappa, Impact of water quality on strength properties of concrete, Indian Journal of Applied Research 4 (7) (2014) 197-199.
Google Scholar
[25]
W. Tahri, X. Hu, C. Shi, Z. Zhang, Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments, Construction and Building Materials 293 (2021) 123484
DOI: 10.1016/j.conbuildmat.2021.123484
Google Scholar
[26]
H. Chbani, B. Saadouki, M. Boudlal, M. Barakat, Formulation of ordinary concrete using the Dreux-Gorisse method, Procedia Structural Integrity 28 (2020) 430-439.
DOI: 10.1016/j.prostr.2020.10.050
Google Scholar
[27]
Moroccan Institute for Standardization (IMANOR), NM 10.1.061, concrete-slump Test, Rabat, Morocco, 2012.
Google Scholar
[28]
Moroccan Institute for Standardization (IMANOR), NM 10.1.068, Preparation and Storage of Test Specimens, Rabat, Morocco, 2012.
Google Scholar
[29]
Moroccan Institute for Standardization (IMANOR), NM 10.1.051 Compressive strength of specimens, Rabat, Morocco, 2012 ».
Google Scholar
[30]
European Committee for Standardization (CEN), EN 1992-1-1 – Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, Brussels, Belgium, 2004.
Google Scholar
[31]
C.L. Oh, S.W. Lee, M.Z. Mohd Raizamzamani, A.R. Azerai, Y. Norrul Azmi, Finite element analysis of high strength reinforced concrete beams, MATEC Web of Conferences 250 (2018) 03007.
DOI: 10.1051/matecconf/201825003007
Google Scholar
[32]
O. Bahr, P. Schaumann, B. Bollen, J. Bracke, Young's modulus and Poisson's ratio of concrete at high temperatures: Experimental investigations, Materials and Design 45 (2013) 421-429
DOI: 10.1016/j.matdes.2012.07.070
Google Scholar
[33]
A.Z. Fiqih, Juswan, M.Z.M. Alie, Beam deflection analysis using the analytical and numerical method, IOP Conference Series: Earth and Environmental Science 575 (2020) 012196.
DOI: 10.1088/1755-1315/575/1/012196
Google Scholar
[34]
M. Karabulut, Nonlinear Load-Deflection Analysis of Steel Rebar-Reinforced Concrete Beams: Experimental, Theoretical and Machine Learning Analysis, Buildings 15 (2025) 432.
DOI: 10.3390/buildings15030432
Google Scholar
[35]
S. Ke, Z. Gao, Experimental and numerical study on flexural behavior of steel fiber reinforced high–strength concrete (SFRHC) beams, Scientific Reports 15 (2025) 18338
DOI: 10.1038/s41598-025-02220-7
Google Scholar