Maximizing Renewable DG Hosting Capacity under Load and Generation Uncertainty Using Multi-Objective Optimization

Article Preview

Abstract:

In this study, distributed generators (DGs) based on renewable energy sources (RESs), besides capacitor banks are optimally allocated in power distribution networks with a proposed multi-objective optimization approach. The proposed approach is used to maximize the hosting capacity (HC) of RES DGs besides decreasing energy loss and voltage deviation in power networks. Uncertainties of load demand and RESs are considered. To facilitate the optimization processes, reduction criterion is utilized for reducing the numerous numbers of uncertain data. The proposed approach is applied to practical and standard power networks for many cases under the uncertain scenarios. Comparative study with other algorithms is performed and robustness of proposed approach is verified in long-term dynamic environment. Also, impacts of changing parameters values on performance are investigated. Additionally, Wilcoxon statistical tests are applied with the proposed approach. Also, comparative study is carried out between weighted sum and Pareto front techniques. Results reveal efficacy of the proposed approach with distribution power networks.

You might also be interested in these eBooks

Info:

Pages:

53-91

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. T. Sayed, A. G. Olabi, A. H. Alami, A. Radwan, A. Mdallal, A. Rezk, and M. A. Abdelkareem, Renewable energy and energy storage systems, Energies, 16(3), (2023), 1-26.

DOI: 10.3390/en16031415

Google Scholar

[2] P. Rani, V. Parkash, and N. K. Sharma, Technological aspects, utilization and impact on power system for distributed generation: a comprehensive survey, Renewable and Sustainable Energy Reviews, 192, (2024), 114257.

DOI: 10.1016/j.rser.2023.114257

Google Scholar

[3] S. M. R. H. Shawon, X. Liang, and M. Janbakhsh, Optimal placement of distributed generation units for microgrid planning in distribution networks, IEEE Transactions on Industry Applications, 59(3), (2023), 2785-2795.

DOI: 10.1109/tia.2023.3236363

Google Scholar

[4] S. M. Ismael, S. H.E. Abdel Aleem, A. Y. Abdelazi, and A. F. Zobaa, State-of-the-art of hosting capacity in modern power systems with distributed generation, Renewable Energy, 130, (2019), 1002-1020.

DOI: 10.1016/j.renene.2018.07.008

Google Scholar

[5] H. Wu, H. Li, and X. Gu, Optimal energy management for microgrids considering uncertainties in renewable energy generation and load demand, Processes, 8(9), (2020), 1-15.

DOI: 10.3390/pr8091086

Google Scholar

[6] H. Mousa, K. Mahmoud, and M. Lehtonen, A comprehensive review on recent developments of hosting capacity estimation and optimization for active distribution networks, IEEE Access, 12, (2024), 18545-18593.

DOI: 10.1109/access.2024.3359431

Google Scholar

[7] L. H. Macedo, J. F. Franco, R. Romero, M. A. Ortega-Vazquez, and M. J. Rider, Increasing the hosting capacity for renewable energy in distribution networks, IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), (2017), Washington, DC, USA.

DOI: 10.1109/isgt.2017.8086006

Google Scholar

[8] J. M. Home-Ortiz, L. H. Macedo, R. Vargas, R. Romero, J. R. S. Mantovani, and J. P. S. Catalao, Increasing RES hosting capacity in distribution networks through closed-loop reconfiguration and volt/var control, IEEE Transactions on Industry Applications, 58(4), (2022), 4424-4435.

DOI: 10.1109/tia.2022.3177175

Google Scholar

[9] X. Xu, X. Chen, J. Wang, L. Fang, F. Xue, and E. G. Lim, Cooperative multi-agent deep reinforcement learning based decentralized framework for dynamic renewable hosting capacity assessment in distribution grids, Energy Reports, 9(10), (2023), 441-448.

DOI: 10.1016/j.egyr.2023.05.197

Google Scholar

[10] J. Suchithra, D. Robinson, and A. Rajabi, Hosting capacity assessment strategies and reinforcement learning methods for coordinated voltage control in electricity distribution networks: a review, Energies, 16(5), (2023), 1-28.

DOI: 10.3390/en16052371

Google Scholar

[11] Y. Xie, K. Xing, L. Luo, S. Lu, C. Chen, X. Wang, W. Zhao, and M. Korkali, Collaborative deployment of multiple reinforcement methods for network-loss reduction in distribution system with seasonal loads, Energy Conversion and Economics, 5(5), (2024), 301-315.

DOI: 10.1049/enc2.12128

Google Scholar

[12] R. Oliveira, L. W. Oliveira, and E. J. Oliveira, Optimization approach for planning soft open points in a MV-distribution system to maximize the hosting capacity, Energies, 16(3), (2023), 1-22.

DOI: 10.3390/en16031035

Google Scholar

[13] I. M. Diaaeldin, S. H. E. Abdel Aleem, A. El-Rafei, A. Y. Abdelaziz, and A. F. Zobaa, Enhancement of hosting capacity with soft open points and distribution system reconfiguration: multi-objective bilevel stochastic optimization, Energies, 13(20), (2020), 1-20.

DOI: 10.3390/en13205446

Google Scholar

[14] N. Rana, M. S. Abd Latiff, S. M. Abdulhamid, and H. Chiroma, Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments, Neural Computing and Applications, 32, (2020), 16245-16277.

DOI: 10.1007/s00521-020-04849-z

Google Scholar

[15] S. Mirjalili, and A. Lewis, The whale optimization algorithm, Advances in Engineering Software, 95, (2016), 51-67.

DOI: 10.1016/j.advengsoft.2016.01.008

Google Scholar

[16] E. S. Ali, R. A. El-Sehiemy, A. A. Abou El-Ela, M. T. Véliz, and S. Kamel, A proposed uncertainty reduction criterion of renewable energy sources for optimal operation of distribution systems, Applied Sciences, 12(2), (2022), 1-15.

DOI: 10.3390/app12020623

Google Scholar

[17] E. S. Ali, S. M. Abd Elazim, and A. Y. Abdelaziz, Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations, Renewable Energy, 101, (2017), 1311-1324.

DOI: 10.1016/j.renene.2016.09.023

Google Scholar

[18] S. Islam, and N. K. Roy, Renewables integration into power systems through intelligent techniques: implementation procedures, key features, and performance evaluation, Energy Reports, 9, (2023), 6063-6087.

DOI: 10.1016/j.egyr.2023.05.063

Google Scholar

[19] M. M. Sayed, M. Y. Mahdy, S. H. E. Abdel Aleem, H. K. M. Youssef, and T. A. Boghdady, Simultaneous distribution network reconfiguration and optimal allocation of renewable-based distributed generators and shunt capacitors under uncertain conditions, Energies,15(6),(2022),1-27.

DOI: 10.3390/en15062299

Google Scholar

[20] J. A. M Rupa, and S. Ganesh, Power flow analysis for radial distribution system using backward/forward sweep method, International Journal of Electrical and Computer Engineering, 8(10), (2015), 1621-1625.

Google Scholar

[21] A. A. Abou El-Ela, A. M. Kinawy, R. A. El-Sehiemy, and M. T. Mouwafi, Efficient performance indices for voltage collapse detection, Engineering Research Journal, 33(3), (2010), 199-206.

DOI: 10.21608/erjm.2010.67319

Google Scholar

[22] A. M. Shaheen, and R. A. El-Sehiemy, Optimal coordinated allocation of distributed generation units/ capacitor banks/ voltage regulators by EGWA, IEEE Systems Journal, 15, (2021), 257-264.

DOI: 10.1109/jsyst.2020.2986647

Google Scholar

[23] A. A. Abou El-Ela, R. A. El-Sehiemy, and A. S. Abbas, Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm, IEEE Systems Journal, 12(4), (2018), 3629-3636.

DOI: 10.1109/jsyst.2018.2796847

Google Scholar

[24] A. Nazih, A. A. Abou El-Ela, and E. S. Ali, Assessment of whale optimization algorithm in maximizing hosting capacity of distributed generators for distribution networks, 25th International Middle East Power System Conference (MEPCON), (2024), Cairo, Egypt.

DOI: 10.1109/mepcon63025.2024.10850129

Google Scholar

[25] Information on https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html.

Google Scholar

[26] A. Nazih, A. A. Abou El-Ela, and E. S. Ali, Maximizing hosting capacity of renewable energy sources in unbalanced distribution networks using multi-objective optimization approach, Electric Power Systems Research, 242, (2025), 111458.

DOI: 10.1016/j.epsr.2025.111458

Google Scholar

[27] M. Chis, M. M. A. Salama, and S. Jayaram, Capacitor placement in distribution systems using heuristic search strategies, IEE Proceedings - Generation, Transmission and Distribution, 144(3), (1997), 225-230.

DOI: 10.1049/ip-gtd:19970945

Google Scholar

[28] I. El-Samahy, E. F. El-Saadany, and M. M. A. Salama, The effect of harmonics on the optimal capacitor placement problem, 11th International Conference on Harmonics and Quality of Power, (2004), Lake Placid, NY, USA.

DOI: 10.1109/ichqp.2004.1409357

Google Scholar

[29] O. A. Saleh, M. Elshahed, and M. Elsayed, Enhancement of radial distribution network with distributed generation and system reconfiguration," Journal of Electrical Systems, 14(3), (2018), 36-50.

Google Scholar

[30] J. RS. Mantovani, F. Casari, and R. A. Romero, Reconfigurao de sistemas de distribuio radiais utilizando o critrio de queda de tenso, Controle and Automacao, 1, (2000), 150-159.

Google Scholar

[31] F. Alakel, and S. Kumar, GA and PSO techniques based optimal tuning of power system stabilizers in a PV integrated power network, European Journal of Engineering and Technology Research, 9(5), (2024), 1-7.

DOI: 10.24018/ejeng.2024.9.5.3180

Google Scholar

[32] P. B. Dao, On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines, Applied Energy, 318, (2022), 1-17.

DOI: 10.1016/j.apenergy.2022.119209

Google Scholar

[33] W. Jakob, and C. Blume, Pareto optimization or cascaded weighted sum: a comparison of concepts, Algorithms, 7, (2014), 166-185.

DOI: 10.3390/a7010166

Google Scholar

[34] R. Timothy Marler, and J. S. Arora, The weighted sum method for multi-objective optimization: new insights, Structural and Multidisciplinary Optimization, 41, (2010), 853-862.

DOI: 10.1007/s00158-009-0460-7

Google Scholar