[1]
W. Vogl, B.K. -L. Ma, M. Sitti, Augmented Reality User Interface for an Atomic Force Microscope-based Nanorobotic System. IEEE Trans. on Nanotechnology. 5(4) (2006) 397-406.
DOI: 10.1109/tnano.2006.877421
Google Scholar
[2]
U. Mick, M. Weigel-Jech, S. Fatikow, Robotic Workstation for AFM-based Nanomanipulation inside an SEM. In Proceedings of IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM), Montreal, Canada, (2010) 696-702.
DOI: 10.1109/aim.2010.5695899
Google Scholar
[3]
S.G. Kim, M. Sitti, Task-Based and Stable Telenanomanipulation in a Nanoscale Virtual Environment, IEEE Transactions on Automation Science and Engineering. 3(3) (2006) 240-247.
DOI: 10.1109/tase.2006.876909
Google Scholar
[4]
M. Sitti, Survey of Nanomanipulation Systems. In Proceedings of the IEEE Conf. on Naoteehnology. Maui, 2001 (75-80).
Google Scholar
[5]
C. D Onal, M Sitti, Teleoperated 3-D Force Feedback from the Nanoscale With an Atomic Force Microscope. IEEE Transactions on Nanotechnology. 9(1) (2010) 46-54.
DOI: 10.1109/tnano.2009.2021472
Google Scholar
[6]
H. Xie, S. Regnier, Three-dimensional Automated Micromanipulation using a Nanotip Gripper with Multi-feedback, Journal of Micromechanics and Microengineering, 19(7) (2009) 075009.
DOI: 10.1088/0960-1317/19/7/075009
Google Scholar
[7]
U. Mick, V. Eichhorn, T. Wortmann, C. Diederichs, S. Fatikow, Combined Nanorobotic AFM/SEM System as Novel Toolbox for Automated Hybrid Analysis and Manipulation of Nanoscale Objects. In Proceedings of IEEE Int. Conf. Robotics and Automation, Alaska, USA, (2010).
DOI: 10.1109/robot.2010.5509414
Google Scholar
[8]
C.D. Onal, M. Sitti, A Scaled Bilateral Control System for Experimental One Dimensional Teleoperated Nanomanipulation. J. Robot. Res. 28(4) (2009) 484-497.
DOI: 10.1177/0278364908097773
Google Scholar
[9]
D.J. Li, W.B. Rong, L.N. Sun, W.Z. Xiao, Stability and Performance of Virtual Reality-based Telenanomanipulation System in SEM. Advanced Materials Research, 183-185 (2011) 1746-1751.
DOI: 10.4028/www.scientific.net/amr.183-185.1746
Google Scholar
[10]
A. Bolopion, B. Cagneau, S. Haliyo, and S. Rgnier, Analysis of Stability and Transparency for Nanoscale Force Feedback in Bilateral Coupling. Journal of Micro-Nano Mechatronics, 4(4) (2009) 145-158.
DOI: 10.1007/s12213-009-0016-3
Google Scholar
[11]
J. E Colgate, G. Schenkel, Passivity of a Class of Sampled-data System: Application to Haptic Interfaces. In Proceedings of Amer. Control Conf. Baltimore. (1994) 3236-3240.
DOI: 10.1109/acc.1994.735172
Google Scholar
[12]
Y. Yokokohji, T. Yoshikawa, Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling. In Proceedings of IEEE Int. Workshop on Intelligent Robots and Systems, Ibaraki, Japan, (1990) 355-362.
DOI: 10.1109/iros.1990.262411
Google Scholar
[13]
M.C. Cavusoglu, A. Sherman, Tendick, F, Design of Bilateral Teleoperation Controllers for Haptic Exploration and Telemanipulation of Soft Environments. IEEE Trans. Robot. Autom. 18(4) (2002) 641-647.
DOI: 10.1109/tra.2002.802199
Google Scholar
[14]
N. Hogan, Controlling Impedance at the Man/machine Interface. In Proceedings of IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, (1989) 1626-1631.
Google Scholar
[15]
R.J. Adams, B. Hannaford, Stable Haptic Interaction with Virtual Environments. IEEE Trans. Robot. Autom. 15(3) (1999) 465-474.
DOI: 10.1109/70.768179
Google Scholar
[16]
K.S. Eom, I.H. Suh B.J. Yi, A Design Method of a Haptic Interface Controller Considering Transparency and Robust Stability. In Proceedings of IEEE Int. Conf. Robots and Systems, Takamatsu, Japan (2000) 961-966.
DOI: 10.1109/iros.2000.893143
Google Scholar
[17]
B. Hannaford, J. Ryu, Time-domain Passivity Control of Haptic Interfaces. In Proceedings of IEEE Int. Conf. Robot and Automation, Seoul, Korea, (2001) 1863-1869.
DOI: 10.1109/robot.2001.932880
Google Scholar
[18]
J.H. Ryu, Y.S. Kim, and B. Hannaford, Sampled and Continuous Time Passivity and Stability of Virtual Environments. IEEE Trans. on Robotics. 20(4) (2004) 772-776.
DOI: 10.1109/tro.2004.829453
Google Scholar
[19]
J.E. Colgate, J. Brown, Factors Affecting the Width of a Haptic Display. In Proceedings of IEEE Int. Conf. Robotics and Automation, San Diego, CA, (2007) 3205-3210.
Google Scholar