New Strategy for Controlled Release of Nitric Oxide

Article Preview

Abstract:

Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the inhibition of platelet aggregation, smooth muscle cell replication, immune response and neuronal communication. Several pathologies have been associated to dysfunctions in the endogenous NO production. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. In this scenario, the preparation of NO-releasing nanomaterials, such as dendrimers, liposomes, metallic, silica, and polymeric nanoparticles, zeolites and metal organic frameworks, is a promising strategy for delivering NO in diverse applications, as discussed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. Hollenberg, I. Cinel, Bench-to-bedside review: Nitric oxide in critical illness- update, Crit. Care 13 (2009) 218.

DOI: 10.1186/cc7706

Google Scholar

[2] S. Umar, A. van der Laarse, Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing hear, Mol. Cell. Biochem. 333 (2010) 191-201.

DOI: 10.1007/s11010-009-0219-x

Google Scholar

[3] H. Strijdom, N. Chamane, A. Lochner, Nitric oxide in the cardiovascular system: a simple molecule with complex actions, Cardiovasc. J. Afr. 20 (2009) 303-310.

Google Scholar

[4] L.J. Ignarro, Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, (2000).

Google Scholar

[5] L.J. Ignarro, Nitric oxide: A unique endogenous signaling molecule in vascular biology (Nobel lecture), Angew. Chem. Int. Ed. 38 (1999) 1882-1892.

DOI: 10.1002/(sici)1521-3773(19990712)38:13/14<1882::aid-anie1882>3.0.co;2-v

Google Scholar

[6] D. Looms, K. Tritsaris, A.M. Pedersen, B. Nauntoftre, S. Dissing, Nitric oxide signaling in salivary glands, J. Oral Phatol. 31 (2002) 569-584.

DOI: 10.1034/j.1600-0714.2002.00047.x

Google Scholar

[7] Y.H. Zhang, N. Hogg, S-nitrosothiols: cellular formation and transport, Free Radical Bio. Med. 38 (2005) 831-838.

DOI: 10.1016/j.freeradbiomed.2004.12.016

Google Scholar

[8] M.R. Miller, I.L. Megson, Review – Recent developments in nitric oxide donor drugs, Brit. J. Dermatol. 151 (2007) 305-321.

DOI: 10.1038/sj.bjp.0707224

Google Scholar

[9] M.G. de Oliveira, S.M. Shishido, A.B. Seabra, N.H. Morgon, Thermal stability of primary S-nitrosothiols: Roles of autocatalysisand structural effects on the rate f nitric oxide release, J. Phys. Chem. A 106 (2002) 8963-8970.

DOI: 10.1021/jp025756u

Google Scholar

[10] A.B. Seabra, A. Fitzpatric, J. Paul, M.G. de Oliveira, R. Weller, Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin, Brit. J. Dermatol. 151 (2004) 977-983.

DOI: 10.1111/j.1365-2133.2004.06213.x

Google Scholar

[11] A.B. Seabra, R. da Silva, G.F.P. de Souza, M.G. de Oliveira, Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces, Artif. Organs 32 (2008) 262-267.

DOI: 10.1111/j.1525-1594.2008.00540.x

Google Scholar

[12] A.B. Seabra, N. Duran, Nitric oxide-releasing vehicles for biomedical applications, J. Mat. Chem. 20 (2010) 1624-1637.

DOI: 10.1039/b912493b

Google Scholar

[13] J.L. Georgii, T.P. Amadeu, A.B. Seabra, M.G. de Oliveira, A.M.A. Costa, Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds, J. Tissue Eng. Regen. Med. 5 (2011) 612-619.

DOI: 10.1002/term.353

Google Scholar

[14] A.B. Seabra, Nitric oxide-releasing nanomaterials and skin care, In: S.S. Guterres, R. Beck, A. Polhmann (Eds), Nanocosmetics and Nanomedicines: New approaches for skin care, Springer, New York, 2011, pp.253-268.

DOI: 10.1007/978-3-642-19792-5_13

Google Scholar

[15] N.A. Stasko, T.H. Fischer, M.H. Schoenfisch, S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles, Biomacromolecules 9 (2008) 834-841.

DOI: 10.1021/bm7011746

Google Scholar

[16] N.A. Stasko., M.H. Schoenfisch, Dendrimers as a scaffold for nitric oxide release 128 (2006) 8265-8271.

DOI: 10.1021/ja060875z

Google Scholar

[17] T.A. Johnson, N.A. Stasko, J.L. Matthews, W.E. Cascio, E.L. Holmuhamedov, C.B. Johnaon, M.H. Schoenfisch, Nitric Oxide, 22 (2010) 30-36.

DOI: 10.1016/j.niox.2009.11.002

Google Scholar

[18] U. Boas, P.M.H. Heegaard, Dendrimers in drug research, Chem. Soc. Rev. 33 (2004) 43-63.

Google Scholar

[19] S.L. Huang, P.H. Kee, H. Kim, M.R. Moody, S.M. Chrzanowski, R.C. MacDonald, D.D. McPherson, Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia, J. Am. Coll. Cardiol. 54 (2009) 652-659.

DOI: 10.1016/j.jacc.2009.04.039

Google Scholar

[20] S. Sortino, Light-controlled nitric oxide delivering molecular assemblies, Chem. Soc. Rev. 39 (2010) 2903-2913.

DOI: 10.1039/b908663n

Google Scholar

[21] L.A. Tai, Y.C. Wang, C.S. Yang, Heat-activated sustaining nitric oxide release from zwitterionic diazeniumdiolates loaded in thermo-sensitive liposomes, Nitric Oxide 23 (2010) 60-64.

DOI: 10.1016/j.niox.2010.04.003

Google Scholar

[22] A.R. Rothrock, R.L. Donkers, M.H. Schoenfisch, Synthesis of nitric oxide-releasing gold nanoparticles, J. Am. Chem. Soc. 127 (2005) 9362-9363.

DOI: 10.1021/ja052027u

Google Scholar

[23] M. Barone, M.T. Sciortino, D. Zaccaria, A. Mazzaglia, S. Sortino, Nitric oxide photocaging platinum nanoparticles with anticancer potential, J. Mater. Chem. 18 (2008) 5531-5536.

DOI: 10.1039/b809121h

Google Scholar

[24] M.A. Polizzi, N.A. Stasko, M.H. Schoenfisch, Water-soluble nitric oxide-releasing gold nanoparticles, Langmuir 23 (2007) 4938-4943.

DOI: 10.1021/la0633841

Google Scholar

[25] J.H. Shin, S.K. Metzger, M.H. Schoenfisch, Synthesis of nitric oxide-releasing silica nanoparticles, J. Am. Chem. Soc. 129 (2007) 4612-4619.

DOI: 10.1021/ja0674338

Google Scholar

[26] D.A. Riccio, J.L. Nugent, M.H. Schoenfisch, Stober synthesis of nitric oxide-releasing S-nitrosothiol-modified silica particles, Chem. Mater. 23 (2011) 1727-1735.

DOI: 10.1021/cm102510q

Google Scholar

[27] J.H. Shin, M.H. Schoenfisch, Inorganic/organic hybrid silica nanoparticles as a nitric oxide delivery scaffold, Chem. Mater. 20 (2008) 239-249.

DOI: 10.1021/cm702526q

Google Scholar

[28] E.M. Hetrick, J.H. Shin, N.A. Stasko, C.B. Johnson, D.A. Wespe, E. Holmuhamedov, M.H. Schoenfisch, Bactericidal efficacy of nitric oxide-releasing nanoparticles, ACS Nano 2 (2008) 235-246.

DOI: 10.1021/nn700191f

Google Scholar

[29] H. Zhang, G.M. Annich, J. Miskulin, K. Stankiewicz, K. Osterholzer, S.I. Merz, R.H. Bartlett, M.E. Meyerhoff, Nitric oxide-releasing fumed silica particles: Synthesis, characterization, and biomedical application, J. Am. Chem. Soc. 125 (2003).

DOI: 10.1021/ja0291538

Google Scholar

[30] P.D. Marcato, N. Duran, New aspects of nanopharmaceutical delivery systems, J. Nanosci. Nanotechnol. 8 (2008) 2216-2229.

DOI: 10.1166/jnn.2008.274

Google Scholar

[31] P.S. Melo, M.M.M. de Azevedo, L. Frungillo, M.C. Anazetti, P.D. Marcato, N. Duran, Nanocytotoxicity: Violacein and violacein-loaded poly (D, L-lactide-co-glycolide) nanoparticles acting on human leukemic cells, J. Biomed. Nanotechnol. 5 (2009).

DOI: 10.1166/jbn.2009.1018

Google Scholar

[32] V.A. Zhukovskii, Problems and prospects for development and production of surgical suture materials, Fibre Chem. 40 (2008) 208-216.

DOI: 10.1007/s10692-008-9039-0

Google Scholar

[33] P.D. Marcato, L.F. Adami, P.S. Melo, N. Duran, A.B. Seabra, Glutathione and S-nitrosoglutathione in alginate/chitosan nanoparticles: Cytotoxicity J. Phys. Conf. Series 304 (2011) 012045.

DOI: 10.1088/1742-6596/304/1/012045

Google Scholar

[34] R.E. Morris, P.S. Wheatly, Gas storage in nanoporous materials, Angew. Chem. Int. Ed. 47 (2008) 4966-4981.

DOI: 10.1002/anie.200703934

Google Scholar

[35] A.K. Boes, P.S. Wheatly, B. Xiao, I.L. Megson, R.E. Morris, Simultaneous and cooperative gas storage and gas production using bifunctional zeolites, Chem. Commun. (2008) 6146-6148.

DOI: 10.1039/b813976h

Google Scholar

[36] P.S. Wheatley, A.R. Butler, M.S. Crane, S. Fox, B. Xiao, A.G. Rossi, I.L. Megson, R.E. Morris, NO-releasing zeolites and their antithrombotic properties, J. Am. Chem. Soc. 128 (2006) 502-509.

DOI: 10.1021/ja0503579

Google Scholar

[37] M. Mowbray, X. Tan, P.S. Wheatly, R.E. Morris, R.B. Weller, Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation, J. Invest. Dermatol. 128 (2008) 352-360.

DOI: 10.1038/sj.jid.5701096

Google Scholar

[38] G. Narin, C.B. Albayrak, S. Ulku, Antibacterial and bactericidal activity of nitric oxide-releasing natural zeolites, Apl. Clay Sci. 50 (2010) 560-568.

DOI: 10.1016/j.clay.2010.10.013

Google Scholar

[39] M.J. Ingleson, R. Heck, J.A. Gould, M.J. Rosseinsky, Nitric oxide chemisorptions in a postsynthetically modified metal-organic framework, Inorg. Chem. 48 (2009) 9986-9988.

DOI: 10.1021/ic9015977

Google Scholar

[40] B. Xiao, P.S. Wheatly, X. Zhao, A.J. Fletcher, S. Fox, A.G. Rossi, I.L. Megson, S. Bordiga, L. Regli, K.M. Thomas, R.E. Morris, High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja066098k

Google Scholar