The Influence of Different Metal-Chelators on the Biological Profile of Nanoparticles for Gallium-68 Based Molecular Imaging

Article Preview

Abstract:

The use of metal chelators is becoming increasingly important in the development of new tracers for molecular imaging. With the rise of the field of nanotechnology, the fusion of both technologies has shown great potential for clinical applications. The pharmacokinetcs of nanoparticles can be monitored via positron emission tomography (PET) after surface modification and radiolabeling with positron emitting radionuclides. Different metal ion chelators can be used to facilitate labeling of the radionuclides and as a prerequisite, optimized radiolabeling procedure is necessary to prevent nanoparticle aggregation and degradation. However, the effects of chelator modification on nanoparticle pharmacokinetic properties have not been well studied and currently no studies to date have compared the biological effects of the use of different chelators in the surface modification of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-31

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Malam Y, Lim J, Seifalian M. Current Trends in the Application of Nanoparticles in Drug Delivery. Curr Med Chem 2011; 18(7): 1067-1078.

DOI: 10.2174/092986711794940860

Google Scholar

[2] Anderson CJ, Ferdani R. Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research. Cancer Biother Radiopharm 2009 2011/12/08; 24(4): 379-393.

DOI: 10.1089/cbr.2009.0674

Google Scholar

[3] Ng QKT, Su H, Armijo AL, Czernin J, Radu CG, Segura T. Clustered Arg–Gly–Asp Peptides Enhances Tumor Targeting of Nonviral Vectors. Chemmedchem 2011; 6(4): 623-627.

DOI: 10.1002/cmdc.201000541

Google Scholar

[4] Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, et al. 64Cu-Labeled Folate-Conjugated Shell Cross-Linked Nanoparticles for Tumor Imaging and Radiotherapy: Synthesis, Radiolabeling, and Biologic Evaluation. J Nucl Med 2005 July 1, 2005; 46(7): 1210-1218.

Google Scholar

[5] Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J, et al. PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)-Conjugated Radiolabeled Iron Oxide Nanoparticles. J Nucl Med 2008 August 2008; 49(8): 1371-1379.

DOI: 10.2967/jnumed.108.051243

Google Scholar

[6] Ocampo-García BE, Ramírez FdM, Ferro-Flores G, De León-Rodríguez LM, Santos-Cuevas CL, Morales-Avila E, et al. 99mTc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl Med Biol 2011; 38(1): 1-11.

DOI: 10.1016/j.nucmedbio.2010.07.007

Google Scholar

[7] Morales-Avila E, Ferro-Flores G, Ocampo-García BE, De Leon-Rodríguez LM, Santos-Cuevas CL, García-Becerra R, et al. Multimeric System of 99mTc-Labeled Gold Nanoparticles Conjugated to c[RGDfK(C)] for Molecular Imaging of Tumor α(v)β(3) Expression. Bioconjug Chem 2011 2011/12/06; 22(5): 913-922.

DOI: 10.1021/bc100551s

Google Scholar

[8] Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 2009; 30(10): 1928-(1936).

DOI: 10.1016/j.biomaterials.2008.12.038

Google Scholar

[9] Stelter L, Pinkernelle J, Michel R, Schwartländer R, Raschzok N, Morgul M, et al. Modification of Aminosilanized Superparamagnetic Nanoparticles: Feasibility of Multimodal Detection Using 3T MRI, Small Animal PET, and Fluorescence Imaging. Mol Imaging Biol 2010; 12(1): 25-34.

DOI: 10.1007/s11307-009-0237-9

Google Scholar

[10] Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of Generator-Produced 68Ga for Medical Application. J Nucl Med 2007 October 1, 2007; 48(10): 1741-1748.

DOI: 10.2967/jnumed.107.040378

Google Scholar

[11] Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem Rev 2010; 110(5): 2858-2902.

DOI: 10.1021/cr900325h

Google Scholar

[12] Song Y, Xu X, MacRenaris KW, Zhang X-Q, Mirkin CA, Meade TJ. Multimodal Gadolinium-Enriched DNA–Gold Nanoparticle Conjugates for Cellular Imaging. Angewandte Chemie International Edition 2009; 48(48): 9143-9147.

DOI: 10.1002/anie.200904666

Google Scholar

[13] Storch D, Behe M, Walter MA, Chen J, Powell P, Mikolajczak R, et al. Evaluation of [99mTc/EDDA/HYNIC0]Octreotide Derivatives Compared with [111In-DOTA0, Tyr3, Thr8]Octreotide and [111In-DTPA0]Octreotide: Does Tumor or Pancreas Uptake Correlate with the Rate of Internalization? J Nucl Med 2005 September 1, 2005; 46(9): 1561-1569.

DOI: 10.1007/s002590100574

Google Scholar

[14] Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, et al. PET of Somatostatin Receptor–Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference. J Nucl Med 2011 July 1, 2011; 52(7): 1110-1118.

DOI: 10.2967/jnumed.111.087999

Google Scholar

[15] De León-Rodríguez LM, Kovacs Z. The Synthesis and Chelation Chemistry of DOTA-Peptide Conjugates. Bioconjug Chem 2007; 19(2): 391-402.

DOI: 10.1021/bc700328s

Google Scholar

[16] Velikyan I, Maecke H, Langstrom B. Convenient Preparation of 68Ga-Based PET-Radiopharmaceuticals at Room Temperature. Bioconjug Chem 2008; 19(2): 569-573.

DOI: 10.1021/bc700341x

Google Scholar

[17] Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, Purification, and Tumor Cell Uptake of 67Ga-Deferoxamine-Folate, a Potential Radiopharmaceutical for Tumor Imaging. Bioconjug Chem 1996; 7(1): 56-62.

DOI: 10.1021/bc9500709

Google Scholar

[18] Caraco C, Aloj L, Eckelman WC. The gallium-deferoxamine complex: stability with different deferoxamine concentrations and incubation conditions. Appl Radiat Isot 1998; 49(12): 1477-1479.

DOI: 10.1016/s0969-8043(97)10107-5

Google Scholar

[19] Levy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, et al. Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. J Am Chem Soc 2004; 126(32): 10076-10084.

DOI: 10.1021/ja0487269

Google Scholar

[20] Ng QKT, Sutton MK, Soonsawad P, Xing L, Cheng H, Segura T. Engineering Clustered Ligand Binding Into Nonviral Vectors: αvβ3 Targeting as an Example. Mol Ther 2009; 17(5): 828-836.

DOI: 10.1038/mt.2009.11

Google Scholar

[21] Gulyaeva N, Zaslavsky A, Lechner P, Chait A, Zaslavsky B. pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol–buffer partitioning. The Journal of Peptide Research 2003; 61(2): 71-79.

DOI: 10.1034/j.1399-3011.2003.00037.x

Google Scholar

[22] Hoff J. Technique Methods of Blood Collection in the Mouse. Lab Animal 2000; 29(10): 47-54.

Google Scholar

[23] Ulman A. Formation and Structure of Self-Assembled Monolayers. Chem Rev 1996 Jun 20; 96(4): 1533-1554.

DOI: 10.1021/cr9502357

Google Scholar

[24] Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104(1): 293–346.

DOI: 10.1021/cr030698+

Google Scholar

[25] Hostetler MJ, Templeton AC, Murray RW. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir 1999; 15: 3782-3789.

DOI: 10.1021/la981598f

Google Scholar

[26] Ingram RS, Hostetler MJ, Murray RW. Poly-hetero-ω-functionalized Alkanethiolate-Stabilized Gold Cluster Compounds. J Am Chem Soc 1997; 119(39): 9175-9178.

DOI: 10.1021/ja971734n

Google Scholar

[27] He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13): 3657-3666.

DOI: 10.1016/j.biomaterials.2010.01.065

Google Scholar

[28] Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol Pharm 2008; 5(4): 505-515.

DOI: 10.1021/mp800051m

Google Scholar

[29] Karacay H, Sharkey RM, McBride WJ, Rossi EA, Chang C-H, Goldenberg DM. Optimization of Hapten-Peptide Labeling for Pretargeted ImmunoPET of Bispecific Antibody Using Generator-Produced 68Ga. J Nucl Med 2011 April 1, 2011; 52(4): 555-559.

DOI: 10.2967/jnumed.110.083568

Google Scholar

[30] Bell LN. Peptide Stability in Solids and Solutions. Biotechnol Prog 1997; 13(4): 342-346.

DOI: 10.1021/bp970057y

Google Scholar

[31] Meyer GJ, Mäcke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004; 31(8): 1097-1104.

DOI: 10.1007/s00259-004-1486-0

Google Scholar

[32] Breeman WAP, de Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging 2003; 30(6): 917-920.

DOI: 10.1007/s00259-003-1142-0

Google Scholar

[33] Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging 2011; 38(7): 1270-1280.

DOI: 10.1007/s00259-011-1744-x

Google Scholar

[34] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Delivery Rev 2002; 54(5): 631-651.

DOI: 10.1016/s0169-409x(02)00044-3

Google Scholar

[35] Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotech 2007; 25(10): 1165-1170.

DOI: 10.1038/nbt1340

Google Scholar

[36] Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010; 6(1): 12-21.

Google Scholar

[37] Khan JA, Pillai B, Das TK, Singh Y, Maiti S. Molecular Effects of Uptake of Gold Nanoparticles in HeLa Cells. Chembiochem 2007; 8(11): 1237-1240.

DOI: 10.1002/cbic.200700165

Google Scholar