Biological Activity of Gold Nanoparticles towards Filamentous Pathogenic Fungi

Article Preview

Abstract:

Gold nanoparticles (GNP) were synthesized, characterized and their antifungal activities investigated against three pathogenic fungi of different genera and species (Fusarium verticillioides, Penicillium citrinum and Aspergillus flavus). The anti-fungi treatments efficiency of the GNP (concentrations: 0, 0.05, 0.1 and 0.2 mg L-1 in PDA media) were evaluated at 2, 4, 6 and 8 days after incubation by measuring the diameter of fungal colonies and investigating fungi structure alterations by scanning electron microscopy (SEM). It was observed that the GNP concentration increased, fungal colony growth diameter reduced. However, the highest GNP concentration applied in the experiment was not able to completely inhibit fungal growth. The SEM analysis of the fungi structure Au treated showed damaged hyphae and unusual bulges that were not observed in fungi that growth on medium without treatment (Control). Although up to the highest concentration of GNP media applied did not completely inhibited fungi growth, the hyphae modifications led growth reduction which could influence the toxins production by these fungi.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Llorens, R. Mateo, M.J. Hinojo, F.M. Valle-Algarra, M. Jiménez, Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops, Int. J. Food Microbiol. 94 (2004) 43-54.

DOI: 10.1016/j.ijfoodmicro.2003.12.017

Google Scholar

[2] J.J. Mateo, R. Mateo, M. Jiménez, Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions, Int. J. Food Microbiol. 72 (2002) 115-123.

DOI: 10.1016/s0168-1605(01)00625-0

Google Scholar

[3] V.M. Scussel, M. Beber, K.M. Tonon, Efeitos da infecção por Fusarium/Giberella na qualidade e segurança de grãos, farinhas e produtos derivados, in: Giberella em cereais de inverno, 1th edn. Berthier, Passo Fundo, 2011, pp.131-175.

Google Scholar

[4] J.W. Bennett, M. Klich, Mycotoxins, Clin. Microbiol. Rev. 16 (2003) 497-516.

Google Scholar

[5] O. Choi, K.K. Deng, N.J. Kim, L. Ross, R.Y. Surampalli, Z. Hu, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Res. 42 (2008) 3066-3074.

DOI: 10.1016/j.watres.2008.02.021

Google Scholar

[6] N. Cioffi, N. Ditaranto, L. Torsi, R.A. Picca, E. De. Giglio, L. Sabbatini, L. Novello, G. Tantillo, T. Bleve-Zacheo, P.G. Zambonin, Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films, Analyt. Bioanalyt. Chem. 382 (2005).

DOI: 10.1007/s00216-005-3334-x

Google Scholar

[7] L. He, Y. Liu, A. Mustapha, M. Lin, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res. 166 (2001) 207-215.

DOI: 10.1016/j.micres.2010.03.003

Google Scholar

[8] Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7, J. Appl. Microbiol. l07 (2009) 1193-1201.

DOI: 10.1111/j.1365-2672.2009.04303.x

Google Scholar

[9] Y. Cui, Y. Zhao, Y. Tian, W. Zhang, W. Lu, X. Jiang, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials. 33 (2012) 2327-2333.

DOI: 10.1016/j.biomaterials.2011.11.057

Google Scholar

[10] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res. 52 (2000) 662-668.

DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

Google Scholar

[11] R.D. Young, D.B. Leinweber, A.W. Thomas, Leading quenching effects in the proton magnetic moment, Phys. Rev. 71 (2005) 014001-1-014001-9.

DOI: 10.1103/physrevd.71.014001

Google Scholar

[12] S. Ray, R. Mohan, J.K. Singh, M.K. Samantaray, M.M. Shaikh, D. Panda, P. Ghosh, Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja075889z

Google Scholar

[13] S. Perni, C. Piccirillo, J. Pratten, P. Prokopovich, W. Chrzanowski, I.P. Parkin, M. Wilson, The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles, Biomaterials 30 (2009) 89-93.

DOI: 10.1016/j.biomaterials.2008.09.020

Google Scholar

[14] Y. Zhang, H. Peng, W. Huang, Y. Zhou, D. Yan, Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles, J. Colloid Interface Sci. 325 (2008) 371-376.

DOI: 10.1016/j.jcis.2008.05.063

Google Scholar

[15] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712-1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[16] T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes, Science. 289 (2000) 1757-1760.

DOI: 10.1126/science.289.5485.1757

Google Scholar

[17] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small. 1 (2005) 325-7.

DOI: 10.1002/smll.200400093

Google Scholar

[18] T. Niidome, D. Pissuwan, M.B. Cortie. The forthcoming applications of gold nanoparticles in drug and gene delivery systems, J. Control Release. 149 (2011) 65-71.

DOI: 10.1016/j.jconrel.2009.12.006

Google Scholar

[19] A.K. Dasgupta, H.K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, Cell selective response to gold nanoparticles, Nanomed. Nanotechnol. 3 (2007) 111-9.

Google Scholar

[20] S. Shortkroff, M. Turell, K. Rice, T.S. Thornhill, Cellular response to nanoparticles, Mater Res. Soc. Symp. Proc. 704 (2002) 375-80.

DOI: 10.1557/proc-704-w11.5.1

Google Scholar

[21] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth process in the synthesis of colloidal gold, Discuss. Faraday. Soc. 11 (1951) 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[22] D. Fraternale, L. Giamperi, D. Ricci, Chemical composition and antifungal acivity of essential iol obtained from in virto plants of Thymus mastichina L, J. Essent. Oil Res. 15 (2003) 278-81.

DOI: 10.1080/10412905.2003.9712142

Google Scholar

[23] A. Mishra, S.K. Tripathy, R. Wahab, S.H. Jeong, I. Hwang, Y.B. Yang, Y.S. Kim, H.S. Shin, S.I.L. Yun, Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells, Appl. Microbiol. Biotechnol. 92 (2011).

DOI: 10.1007/s00253-011-3556-0

Google Scholar

[24] P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, R. Franco, Gold Nanoparticles for the development of clinical diagnosis methods, Analyt. Bioanalyt. Chem. 3 (2008) 943-50.

DOI: 10.1007/s00216-007-1768-z

Google Scholar

[25] M. Vidotti, R.F. Carvalhal, R.K. Mendes, D.C.M. Ferreira, L.T. Kubota, Biosensors based on gold nanostructures, J. Braz. Chem. Soc. 1 (2011) 3-20.

DOI: 10.1590/s0103-50532011000100002

Google Scholar

[26] A. Jyoti, P. Pandey, S.P. Singh, S.K. Jain, R. Shanker, Colorimetric detection of nucleic acid signature of shiga toxin producing E. coli using Au NPs, J. Nanosci. Nanotechnol. 7 (2010) 4154-4158.

DOI: 10.1166/jnn.2010.2649

Google Scholar

[27] C. Suryanarayana, M.G. Norton, X-ray Diffraction: a Practical Approach. New York: Plenum Press, 1998, p.273.

Google Scholar

[28] H.W. Gu, P.L. Ho, E. Tong, L. Wang, B. Xu, Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano. Letters. 9 (2003)1261-1263.

DOI: 10.1021/nl034396z

Google Scholar