Properties and Antimicrobial Activity of Nanosilver Deposited Cotton Fabric Coated with γ-Methacryloxypropyl Trimethoxysilane

Article Preview

Abstract:

The simple and industrially adjustable process of silver nanoparticles deposition on cotton fabric followed by coating with γ-methacryloxypropyl trimethoxysilane (MPS), as well as the properties of obtained nanocomposite has been investigated. Silver nanoparticles were prepared through the reduction of silver nitrate with sodium borohydrate and deposited on cellulose fabric. In order to stabilize obtained nanostructured material and improve its properties, the fabric was treated by immersion in cross linkable MPS. The morphology of the finished fabrics was characterized by Scanning Electron Microscopy (SEM). It has been determined that process does not impair nanocharacter of silver particles and yield uniform distribution throughout the fabric surface. The concentration of Ag in the fabric samples was determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The average deposited amount of nanoparticles was found to be 63 ppm and 48 ppm for samples without and those with MPS, respectively. The character of obtained polysiloxane coating was examined using Fourier Transform Infrared (FTIR) spectroscopy. The presence of SiOSi bonds on the cellulose surface pointed out to self-condensation between silanol groups. Differential Thermal and Thermo-Gravimetric Analysis (DTA/TGA) revealed that MPS deposited on fabric provided modification of thermal properties. The change of the surface properties after the modification was ascertained by contact angle measurements. The antimicrobial activity of the antibacterial finish on the cotton fabric, expressed as bacterial reduction efficiency, has been determined. Bacterial reduction of at least 88.5% against both, Staphylococcus aureus and Escherichia coli, has been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-88

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. A. O'Neill, G. J. Vine, A. E. Beezer, A. H. Bishop, J. Hadgraft, C. Labetoulle, M. Walker, P. G. Bowler, Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study, Int. J. Pharm. 263, (2003) 61–68.

DOI: 10.1016/j.ijpharm.2003.11.007

Google Scholar

[2] N. Durán, P. D. Marcato, G. I. H. D. Souza, O. L. Alves, E. Esposito, Antibacterial Effect of Silver Nanoparticles produced by fungal process on textile fabrics and their effluent treatment, J. Biomed. Nanotech. 3, (2007) 203–208.

DOI: 10.1166/jbn.2007.022

Google Scholar

[3] S. Y. Yeo, S. H. Jeong, Preparation and characterization of polypropylene/silver nanocomposite fibers, Polymer Int. 52, (2003) 1053–1057.

DOI: 10.1002/pi.1215

Google Scholar

[4] S. T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Coll. and Surf. A: Phy. Eng. Asp. 289, (200 6) 105–109.

DOI: 10.1016/j.colsurfa.2006.04.012

Google Scholar

[5] Y. Gao, R. Cranston, Recent Advances in Antimicrobial Treatments of Textiles, Text. R. J. 78, (2008) 60–72.

Google Scholar

[6] X. Chen, H. J. Schluesener, Nanosilver: a nanoproduct in medical application, Tox. Lett. 176, (2008) 1–12.

Google Scholar

[7] R. Dastjerdi, M. Montazer, S. Shahsavan, A new method to stabilize nanoparticles on textile surfaces, Coll. and Surf. A: Phy. Eng. Asp. 345, (2009) 202–210.

DOI: 10.1016/j.colsurfa.2009.05.007

Google Scholar

[8] B. Tomšič, B. Simončič, B. Orel, M. Žerjav, H. Schroers, A. Simončič, Z. Samardžija, Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric, Carb. Polymers 75, (2009) 618–626.

DOI: 10.1016/j.carbpol.2008.09.013

Google Scholar

[9] M. -C. Brochier Salon, M. Abdelmouleh, S. Boufi, M. Naceur Belgacem, A. Gandini, Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions, J. Coll. and Interface Sci. 289, (2005) 249–261.

DOI: 10.1016/j.jcis.2005.03.070

Google Scholar

[10] C. W. Chu, D. P. Kirby, P. D. Murphy, Interactions of aminosilane with alumina and silica substrates deposited from nonaqueous and aqueous media, J. Adh. and Sci. Technol. 7, (1993) 417–433.

DOI: 10.1163/156856193x00303

Google Scholar

[11] D. K. Owens, R. C. Wendt, Estimation of the surface free energy of polymers, J. of Appl. Polymer Sci. 13, (1969) 1741–1747.

DOI: 10.1002/app.1969.070130815

Google Scholar

[12] M. H. El-Rafie, A. A. Mohamed, Th. I. Shaheen, A. Hebeish, Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics, Carb. Polymers 80, (2010) 779–782.

DOI: 10.1016/j.carbpol.2009.12.028

Google Scholar

[13] M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers, J. Am. Chem. Soc. 123, (2001).

DOI: 10.1021/ja003312a

Google Scholar

[14] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116, (2002) 6755– 6759.

DOI: 10.1063/1.1462610

Google Scholar

[15] S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz, Synthesis of Silver Nanoparticles, J. Chem. Edu. 84, (2007) 322–325.

DOI: 10.1021/ed084p322

Google Scholar

[16] M. González Alriols, A. García, R. Llano-ponte, J. Labidi, Combined organosolv and ultrafiltration lignocellulosic biorefinery process, Chem. Eng. J. 157, (2010) 113–120.

DOI: 10.1016/j.cej.2009.10.058

Google Scholar

[17] E. Nithya, R. Radhai, R. Rajendran, S. Shalini, V. Rajendran, S. Jayakumar, Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophility of the cotton fabrics, Carb. Polymers 83, (2011) 1652–1658.

DOI: 10.1016/j.carbpol.2010.10.027

Google Scholar

[18] N. A. Ibrahim, S. S. Sharaf, M. M. Hashem, A novel approach for low temperature bleaching and carbamoylethylation of cotton cellulose, Car. Polymers 82, (2010) 1248–1255.

DOI: 10.1016/j.carbpol.2010.06.059

Google Scholar

[19] M. Pantoja, B. Díaz-Benito, F. Velasco, J. Abenojar, J. C. del Real, Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy, App. Surf. Sci. 255, (2009).

DOI: 10.1016/j.apsusc.2009.02.022

Google Scholar

[20] A. Nistal, C. Palencia, M. A. Mazo, F. Rubio, J. Rubio, J. L. Oteo, Analysis of the interaction of vinyl and carbonyl silanes with carbon nanofiber surfaces, Carbon 49, (2011) 1635–1645.

DOI: 10.1016/j.carbon.2010.12.047

Google Scholar

[21] E. Tang, H. Liu, L. Sun, E. Zheng, G. Cheng, Fabrication of zinc oxide/poly(styrene) grafted nanocomposite latex and its dispersion, Eu. Polymer J. 43, (2007) 4210–4218.

DOI: 10.1016/j.eurpolymj.2007.05.015

Google Scholar

[22] M. Abdelmouleh, S. Boufi, M. N. Belgacem, A. P. Duarte, A. Ben Salah, A. Gandini, Modification of cellulosic fibres with functionalised silanes: development of surface properties, Int. J. Adh. and Adhesives 24, (2004) 43–54.

DOI: 10.1016/s0143-7496(03)00099-x

Google Scholar

[23] Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Compos. A: App. Sci. Man. 41, (2010) 806– 819.

DOI: 10.1016/j.compositesa.2010.03.005

Google Scholar

[24] M. W. Daniels, L. F. Francis, J. Silane Adsorption Behavior, Microstructure and Properties of Glycidoxypropyltrimethoxysilane-Modified Colloidal Silica Coatings, Coll. Interface Sci. 205, (1998) 191–200.

DOI: 10.1006/jcis.1998.5671

Google Scholar

[25] W. Xing, G. Jie, L. Song, S. Hu, X. Lv, X. Wang, Y. Hu, Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings, Th. Acta 513, (2011) 75–82.

DOI: 10.1016/j.tca.2010.11.014

Google Scholar

[26] M. Abboud, M. Turner, E. Duguet, M. Fontanille, PMMA-based composite materials with reactive ceramic fillers, J. Mater. Chem. 7, (1997) 1527–1532.

DOI: 10.1039/a700573c

Google Scholar

[27] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J. C. Galvan, S. Radzki, M. A. Villegas, Preparation and electrochemical study of cerium–silica sol–gel thin films, J. Alloys and Comp. 380, (2004) 219–224.

DOI: 10.1016/j.jallcom.2004.03.047

Google Scholar

[28] B. Liu, S. Cao, X. Deng, S. Li, R. Luo, Adsorption behavior of protein onto siloxane microspheres, App. Surf. Sci. 252, (2006) 7830–7836.

DOI: 10.1016/j.apsusc.2005.09.058

Google Scholar