Synthesis of Nanoflower Precursors in Two-Phase System via Microwave-Assisted Hydrothermal Method and their In Situ Thermal Convention to NiO

Article Preview

Abstract:

The novel nanoflower precursors were successfully fabricated via microwave hydrothermal process in the presence of an anion surfactant Poly (N-vinyl-2-pyrrolidone). Nickel oxide (NiO) with the similar morphology of precursors was also obtained by a simple thermal decomposition of the as-prepared precursors at 400 °C for 2 h in air. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized NiO nanoclusters have a cubic structure with an average size 500-1000 nm. The specific capacitance of NiO is about 208.4 F/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sun, G. Meng, G. Zhang, J.P. Masse, L. Zhang, Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process, Chem. -Eur. J. 13 (2007) 9087-9092.

DOI: 10.1002/chem.200700448

Google Scholar

[2] J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, D. Golberg, Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale, Adv. Mater. 17 (2005) 971-975.

DOI: 10.1002/adma.200401789

Google Scholar

[3] Y. Li, C. Li, S.O. Cho, G. Duan, W. Cai, Silver hierarchical bowl-like array: synthesis, superhydrophobicity, and optical properties, Langmuir 23 (2007) 9802-9807.

DOI: 10.1021/la700847c

Google Scholar

[4] G.R. Li, F.L. Zheng, Y.X. Tong, Controllable synthesis of Bi2Te3 intermetallic compounds with hierarchical nanostructures via electrochemical deposition route, Cryst. Growth Des. 8 (2008) 1226-1232.

DOI: 10.1021/cg700790h

Google Scholar

[5] L. Ye, C. Wu, W. Guo, Y. Xie, MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties, Chem. Commun. 45 (2006) 4738-4740.

DOI: 10.1039/b610601c

Google Scholar

[6] Q. Wang, G. Xu, G. Han, Synthesis and characterization of large-scale hierarchical dendrites of single-crystal CdS, Cryst. Growth Des. 6 (2006) 1776-1780.

DOI: 10.1021/cg060017e

Google Scholar

[7] L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, W.W. Wang, Hierarchical β-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks, Cryst. Growth Des. 7 (2007) 2716-2719.

DOI: 10.1021/cg060530s

Google Scholar

[8] H. Zhang, X. Zhang, H. Li, Z. Qu, S. Fan, M. Ji, Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion, Cryst. Growth Des. 7 (2007) 820-824.

DOI: 10.1021/cg0607351

Google Scholar

[9] E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valery, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre, F. Artzner, Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization, Nat. Mater. 6 (2007).

DOI: 10.1038/nmat1912

Google Scholar

[10] M. Salavati-Niasari, N. Mir, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition, Polyhedron 28 (2009) 1111-1114.

DOI: 10.1016/j.poly.2009.01.026

Google Scholar

[11] B.K. Paul, D. Nandy, Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride, J. Colloid Interface Sci. 316 (2007).

DOI: 10.1016/j.jcis.2007.09.009

Google Scholar

[12] H. Steinebach, S. Kannan, L. Rieth, F. Solzbacher, H2 gas sensor performance of NiO at high temperatures in gas mixtures, Sensor. Actuator. B- Chem. 151 (2010) 162-168.

DOI: 10.1016/j.snb.2010.09.027

Google Scholar

[13] X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres, Nanotechnology 16 (2005) 37-40.

DOI: 10.1088/0957-4484/16/1/009

Google Scholar

[14] T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties, J. Solid State Electrochem. 12 (2008) 1003-1009.

DOI: 10.1007/s10008-007-0465-3

Google Scholar

[15] X. Wang, L. Li, Y.G. Zhang, S.T. Wang, Synthesis of single-crystalline hollow octahedral NiO, Cryst. Growth Des. 6 (2006) 2163-2165.

Google Scholar

[16] M.C.A. Fantini, F.F. Ferreira, A. Gorenstein, Theoretical and experimental results on Au-NiO and Au-CoO electrochromic composite films, Solid State Ionics 152-153 (2002) 867-872.

DOI: 10.1016/s0167-2738(02)00387-9

Google Scholar

[17] G. Mattei, P. Mazzoldi, M.L. Post, D. Buso, M. Guglielmi, A. Martucci, Cookie-like Au/NiO nanoparticles with optical gas-sensing properties, Adv. Mater. 19 (2007) 561-564.

DOI: 10.1002/adma.200600930

Google Scholar

[18] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.

DOI: 10.1038/35035045

Google Scholar

[19] Z.F. Zhu, Y.L. Zhang, H. Liu, J. Wang, J. Du, The synthesis of novel NiO microsphere architectures with electrochemical behavior, Vacuum 86 (2012) 1547-1551.

DOI: 10.1016/j.vacuum.2012.03.014

Google Scholar

[20] J.X. Zhu, T. Zhu, X.Z. Zhou, Y.Y. Zhang, X.W. Lou, X.D. Chen, H. Zhang, H.H. Hng, Q.Y. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability, Nanoscale 3 (2011) 1084-1089.

DOI: 10.1039/c0nr00744g

Google Scholar

[21] J. Bahadur, D. Sen, S. Mazumder, S. Ramanathan, Effect of heat treatment on pore structure in nano-crystalline NiO: A small angle neutron scattering study, J. Solid State Chem. 181 (2008) 1227-1235.

DOI: 10.1016/j.jssc.2008.01.050

Google Scholar

[22] Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermochim Acta 437 (2005) 106-109.

DOI: 10.1016/j.tca.2005.06.027

Google Scholar

[23] C.K. Xu, K.Q. Hong, S. Liu, G.H. Wang, X.N. Zhao, A novel wet chemical route to NiO nanowires, J. Cryst. Growth 255 (2003) 308-312.

DOI: 10.1016/s0022-0248(03)01246-6

Google Scholar

[24] Z.H. Liang, Y.J. Zhu, X.L. Hu, β-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets, J. Phys. Chem. B 108 (2003) 3488-3491.

DOI: 10.1021/jp037513n

Google Scholar

[25] X. Chen, L. Liu, G. Liu, Recent progress on the spectroscopy of rare earth ions in core-shells, nanowires, nanotubes, and other novel nanostructures, J. Nanosci. Nanotechnol. 8 (2008) 1126-1137.

DOI: 10.1166/jnn.2008.18160

Google Scholar

[26] F.S. Cai, G.Y. Zhang, J. Chen, X.L. Gou, H.K. Liu, S.X. Dou, Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries, Angew. Chem. Int. Ed. 43 (2004) 4212-4216.

DOI: 10.1002/anie.200460053

Google Scholar

[27] W. Wang, L. Ao, Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux, Cryst. Growth Des. 8 (2008) 358-362.

Google Scholar

[28] S. Yang, H. Liu, A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization, J. Mater. Chem. 16 (2006) 4480-4487.

DOI: 10.1039/b612013j

Google Scholar

[29] Y. Zhang, Y.H. Gui, X.B. Wu, Preparation of nanostructurcs NiO and their electrochemical capacitive behaviors, Int. J. Hydrogen Energy 34 (2009) 2467-2470.

DOI: 10.1016/j.ijhydene.2008.12.078

Google Scholar

[30] M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V. SubbaRao, B.V.R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater. 17 (2007) 2792-2799.

DOI: 10.1002/adfm.200601186

Google Scholar

[31] Y.J. Mai, J.P. Tu, X.H. Xia, C.D. Gu, X.L. Wang, Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries, J. Power Sources 196 (2011) 6388-6393.

DOI: 10.1016/j.jpowsour.2011.03.089

Google Scholar

[32] J. Gomez, R. Nelson, E.E. Kalu, M.H. Weatherspoon, J.P. Zheng, Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects, J. Power Sources 196 (2011) 4826-4831.

DOI: 10.1016/j.jpowsour.2010.12.107

Google Scholar