MnOx/Ni(OH)2 Nanocomposite Materials for High-Performance Electrochemical Capacitor Application

Article Preview

Abstract:

Nanostructured MnOx/Ni (OH)2 composites have been electrodeposited on Ni foam for synthesis of a binder-free electrode for electrochemical capacitors with high specific capacitance and stable electrochemical properties. The microstructure, morphology and chemical composition were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical capacitance of the electrode active materials. The results indicated that MnOx acted as a template for growth of Ni (OH)2 with an inter-connected 3D porous network nanostructure. A maximum capacitance value of 2334 F/g at current density of 5 A/g in 1 M KOH electrolyte was achieved, much higher than that of pure Ni (OH)2 and MnOx (992 and 179 F/g, respectively). Moreover, in the charge/discharge process at even larger current density of 20 A/g, the electrode could maintain 82.8 % of the initial specific capacitance after 500 cycles, higher than that of pure Ni (OH)2 (only 46.6% remains). The enhanced capacitance performance was attributed to the synergic effect between the respective single oxides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-60

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edn, Kluwer Academic/Plenum Publishers, New York, (1999).

Google Scholar

[2] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37-50.

DOI: 10.1016/s0378-7753(00)00485-7

Google Scholar

[3] J.R. Miller, Electrochemical capacitor thermal management issues at high-rate cycling, Electrochim. Acta 52 (2006) 1703-1708.

DOI: 10.1016/j.electacta.2006.02.056

Google Scholar

[4] R. Kötz, Principles and applications of electrochemical capacitors, M. Carlen, Electrochim. Acta 45 (2000) 2483-2498.

DOI: 10.1016/s0013-4686(00)00354-6

Google Scholar

[5] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Mater. 7 (2008) 845-854.

Google Scholar

[6] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010).

DOI: 10.1039/c0ee00004c

Google Scholar

[7] J.K. Chang, S.H. Hsu, W.T. Tsai, I.W. Sun, A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance, J. Power Sources 177 (2008) 676-680.

DOI: 10.1016/j.jpowsour.2007.11.039

Google Scholar

[8] Y.B. He, G.R. Li, A.L. Wang, C.Y. Su, Y.X. Tong, Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances, Energy Environ. Sci. 4 (2011).

DOI: 10.1039/c0ee00669f

Google Scholar

[9] E.H. Liu, W. Li, J. Li, X.Y. Meng, R. Ding, S.T. Tan, Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical supercapacitors, Mater. Res. Bulletin 44 (2009) 1122-1126.

DOI: 10.1016/j.materresbull.2008.10.003

Google Scholar

[10] B. Choi, S. Lee, C. Fushimi, A. Tsutsumi, Development of NiMH-based fuel cell/battery (FCB) system: Characterization of Ni(OH)2/MnO2 positive electrode for FCB, J. Power Sources 194 (2009) 1150-1155.

DOI: 10.1016/j.jpowsour.2009.06.039

Google Scholar

[11] Y.H. Wang, H. Liu, X.L. Sun, I. Zhitomirskya, Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors, Scripta Materialia 61 (2009) 1079-1082.

DOI: 10.1016/j.scriptamat.2009.08.040

Google Scholar

[12] M.W. Dijksma, P.H.L. Notten, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes, Electrochim. Acta 51 (2006) 3609-3621.

DOI: 10.1016/j.electacta.2005.10.022

Google Scholar

[13] W.F. Wei, X.W. Cui, X.H. Mao, W.X. Chen, D.G. Ivey, Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapaciitor applications – Effect of supersturation ratio, Electrochim. Acta 56 (2011).

DOI: 10.1016/j.electacta.2010.10.044

Google Scholar

[14] S.W. Lee, J.Y. Kim, S. Chen, P.T. Hammond, Y.S. Horn, Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors, ACS Nano 4 (2010) 3889-3896.

DOI: 10.1021/nn100681d

Google Scholar

[15] M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16 (2004) 3184-3190.

DOI: 10.1021/cm049649j

Google Scholar

[16] C.H. Wu, J.S. Ma, C.H. Lu, Effect of reducing agents on the electrochemical properties of the prepared manganese oxide powders, Current Appl. Phys. 12 (2012) 1058-1063.

DOI: 10.1016/j.cap.2012.01.007

Google Scholar

[17] D.D. Zhao, Z. Yang, L.L. Zhang, Y.F. Zhang, Electrodeposited manganese oxide on nickel foam-supported carbon nanotubes for electrode of supercapacitors, Electrochem. Solid-State Lett. 14 (2011) A 93-96.

DOI: 10.1149/1.3562927

Google Scholar

[18] P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, N. Munichandraiah, Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells, J. Electrochem. Soc. 141 (1994) 2956-2959.

DOI: 10.1149/1.2059264

Google Scholar

[19] C. Lin, J.A. Ritter, B.N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochem. Soc. 145 (1998) 4097-4103.

DOI: 10.1149/1.1838920

Google Scholar