A New Theoretical Method for Transport Processes in Nanosensoristics

Article Preview

Abstract:

The approach for converting nanoscale mechanical energy into electrical energy using piezoelectric nanowire arrays has been shown by a deflection of the nanowires via a corrugated electrode operated up and down by ultrasounds. I have performed an analytical method for describing the most important quantities concerning transport phenomena; it predicts very high initial diffusion of charge. This behaviour appears via mechanical external device stresses, which assumes therefore the typical characteristics of a nanosensor. With this method it is possible to deduce interesting informations about the device sensitivity, focusing on the important correlation between sensitivity and high initial diffusivity of these materials at nanometric state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-149

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Wang, Self-Powered Nanotech, Sci. Am. (2008) 82-87.

Google Scholar

[2] J.A. Paradiso, T. Starner, Energy Scavenging for Mobile and Wireless Electronics, Perv. Comput. 4 (2005) 18-27.

DOI: 10.1109/mprv.2005.9

Google Scholar

[3] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Beilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Improving Power Output for Vibration-Based Energy Scavengers, Perv. Comput. 5 (2005) 28-36.

DOI: 10.1109/mprv.2005.14

Google Scholar

[4] P. Di Sia, An Analytical Transport Model for Nanomaterials, J. Comput. Theor. Nanosci. Vol. 8 (2011) 84-89.

Google Scholar

[5] P. Di Sia, Classical and quantum transport processes in nano-bio-structures: a new theoretical model and applications, PhD Thesis (2011).

Google Scholar

[6] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z.L. Wang, Flexible Piezotronic Strain Sensor, Nano Lett. Vol. 8 N. 9 (2008) 3035-3040.

DOI: 10.1021/nl802367t

Google Scholar

[7] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire, Nano Lett. 6 (2006) 2768-2772.

DOI: 10.1021/nl061802g

Google Scholar

[8] C.S. Lao, Q. Kuang, Z.L. Wang, C. M. Park, Y. Deng, Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors, Appl. Phys. Lett. 90 (2007) 262107-3.

DOI: 10.1063/1.2748097

Google Scholar

[9] Z.L. Wang, Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics, Adv. Funct. Mater. 18 (2008) 3553-3567.

DOI: 10.1002/adfm.200800541

Google Scholar

[10] Z.L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao, Piezoelectric Nanogenerators for Self-Powered Nanodevices, IEEE Perv. Comp. 7 (2008) 49-55.

DOI: 10.1109/mprv.2008.14

Google Scholar

[11] P.H. Yeh, Z. Li, and Z.L. Wang, Schottky-Gated Probe-Free ZnO Nanowire Biosensor, Adv. Mater. 21 (2009) 4975-4978.

DOI: 10.1002/adma.200902172

Google Scholar

[12] M. Ziman, Principles of the Theory of Solids, Cambridge University Press, New York, (1979).

Google Scholar

[13] N.V. Smith, Classical generalization of the Drude formula for the optical conductivity, Phys. Rev. B 64 (2001) 155106-6.

Google Scholar

[14] J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A.K. Azad, and Z. Zhu, Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures, J. Phys. Chem. C 111 (2007) 13000-13006.

DOI: 10.1021/jp073343t

Google Scholar

[15] P. Di Sia, V. Dallacasa, F. Dallacasa, A Powerful Method to Describe Transport Properties of Nano and Bio Materials, J. Nano Res. Vol. 11 (2010) 45-56.

DOI: 10.4028/www.scientific.net/jnanor.11.45

Google Scholar

[16] J.B. Baxter and C.A. Schmuttenmaer, Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy, J. Phys. Chem. B 110 (2006) 25229-25239.

DOI: 10.1021/jp064399a

Google Scholar