[1]
J. Gao, R. Chen, D. Li, L. Jiang, J. Ye, X. Ma, X. Chen, Q. Xiong, H. Sun, T. Wu, UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires, Nanotechnology. 22 (2011) 195706-195716.
DOI: 10.1088/0957-4484/22/19/195706
Google Scholar
[2]
Y. M. Chang, M. L. Lin, T. Y. Lai, H. Y. Lee, C. M. Lin, Y. C. S. Wu, J. Y. Juang, Field emission properties of gold nanoparticle-decorated ZnO nanopillars, ACS Applied Materials & Interfaces. 4 (2012) 6676-6682.
DOI: 10.1021/am301848a
Google Scholar
[3]
Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies, Nanoscale. 3 (2011) 154-165.
DOI: 10.1039/c0nr00560f
Google Scholar
[4]
C. Yan, H. Jiang, T. Zhao, C. Li, J. Ma, P. S. Lee, Binder-free Co(OH)2 nanoflake-ITO nanowire hetero structured electrodes for electrochemical energy storage with improved high-rate capabilities, Journal of Materials Chemistry. 21 (2011).
DOI: 10.1039/c0jm04442c
Google Scholar
[5]
L. Zhang, S. Ge, Y. Zuo, B. Zhang, L. Xi, Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures, The Journal of Physical Chemistry C. 114 (2010) 7541-7547.
DOI: 10.1021/jp9065604
Google Scholar
[6]
G. Shen, J. Xu, X. Wang, H. Huang, D. Chen, Growth of Directly Transferable In2O3 Nanowire Mats for Transparent Thin-film Transistor Applications, Advanced Materials. 23 (2011) 771-775.
DOI: 10.1002/adma.201003474
Google Scholar
[7]
D. Bai, Z. Zhang, L. Li, F. Xu, K. Yu, Controllable synthesis and field emission properties of In2O3 nanostructures, Crystal Research and Technology. 45 (2010) 173-177.
DOI: 10.1002/crat.200900602
Google Scholar
[8]
N. Singh, C. Yan, P. S. Lee, Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors, Sensors and Actuators B: Chemical. 150 (2010) 19-24.
DOI: 10.1016/j.snb.2010.07.051
Google Scholar
[9]
T. Lim, S. Lee, M. Meyyappan, S. Ju, Control of semiconducting and metallic indium oxide nanowires, ACS nano. 5 (2011) 3917-3922.
DOI: 10.1021/nn200390d
Google Scholar
[10]
N. Singh, T. Zhang, P. S. Lee, The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods, Nanotechnology. 20 (2009) 195605-195612.
DOI: 10.1088/0957-4484/20/19/195605
Google Scholar
[11]
A. Qurashi, E. El-Maghraby, T. Yamazaki, Y. Shen, T. Kikuta, A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications, Journal of Alloys and Compounds. 481 (2009) L35-L39.
DOI: 10.1016/j.jallcom.2009.03.100
Google Scholar
[12]
Y. Yan, Y. Zhang, H. Zeng, J. Zhang, X. Cao, L. Zhang, Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods, Nanotechnology. 18 (2007) 175601-175607.
DOI: 10.1088/0957-4484/18/17/175601
Google Scholar
[13]
A. Menzel, R. Goldberg, G. Burshtein, V. Lumelsky, K. Subannajui, M. Zacharias, Y. Lifshitz, Role of carrier gas flow and species diffusion in nanowire growth from thermal CVD, The Journal of Physical Chemistry C. 116 (2012) 5524-5530.
DOI: 10.1021/jp212635w
Google Scholar
[14]
K. Subannajui, N. Ramgir, R. Grimm, R. Michiels, Y. Yang, S. Müller, M. Zacharias, ZnO nanowire growth: a deeper understanding based on simulations and controlled oxygen experiments, Crystal Growth & Design. 10 (2010) 1585-1589.
DOI: 10.1021/cg901104j
Google Scholar
[15]
H. Tian, J. Xu, Y. Tian, P. Deng, H. Wen, Morphological evolution of ZnO nanostructures: experimental and preliminary simulation studies, CrystEngComm. 14 (2012) 5539-5543.
DOI: 10.1039/c2ce25219h
Google Scholar
[16]
H. Tian, J. Xu, Y. Tian, P. Deng, H. Wen, Effect of different O2/N2 flow rate on the size and yield of ZnO nanostructures, CrystEngComm. 15 (2013) 2544-2548.
DOI: 10.1039/c3ce26907h
Google Scholar
[17]
COMSOL Multiphysics User's Guide, Version 3. 5a, COMSOL AB, Stockholm, Sweden, (2008).
Google Scholar
[18]
RS. Wagner, WC. Ellis, Vapor–liquid–solid mechanism of single crystal growth, Applied Physics Letters. 4 (1964) 89-90.
DOI: 10.1063/1.1753975
Google Scholar
[19]
Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures, The Journal of Physical Chemistry B. 109 (2005) 11204-11208.
DOI: 10.1021/jp050545l
Google Scholar
[20]
Z. Dai, Z. Pan, Z. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials. 13 (2003) 9-24.
DOI: 10.1002/adfm.200390013
Google Scholar
[21]
L. Cao, B. Garipcan, J. S. Atchison, C. Ni, B. Nabet, J. E. Instability and transport of metal catalyst in the growth of tapered silicon nanowires, Spanier, Nano letters. 6 (2006) 1852-1857.
DOI: 10.1021/nl060533r
Google Scholar
[22]
C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, Zinc oxide nanostructures: morphology derivation and evolution, The Journal of Physical Chemistry B. 109 (2005) 19758-19765.
DOI: 10.1021/jp0509358
Google Scholar
[23]
A. Menzel, K. Subannajui, R. Bakhda, Y. Wang, R. Thomann, M. Zacharias, Tuning the growth mechanism of ZnO nanowires by controlled carrier and reaction gas modulation in thermal CVD, The Journal of Physical Chemistry Letters. 3 (2012) 2815-2821.
DOI: 10.1021/jz301103s
Google Scholar
[24]
D. S. Kim, R. Scholz, U. Gösele, Gold at the root or at the tip of ZnO nanowires: a model, M. Zacharias, Small. 4 (2008) 1615-1619.
DOI: 10.1002/smll.200800060
Google Scholar
[25]
K. A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson, W. Seifert, Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires, Nano letters. 5 (2005) 761-764.
DOI: 10.1021/nl050301c
Google Scholar
[26]
M. Kirkham, X. Wang, Z. L. Wang, R. L. Snyder, Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour-liquid-solid process, Nanotechnology. 18 (2007) 365304-365309.
DOI: 10.1088/0957-4484/18/36/365304
Google Scholar
[27]
M. M. Brewster, X. Zhou, S. K. Lim, S. Gradecak, The growth and optical properties of ZnO nanowalls, The Journal of Physical Chemistry Letters. 2 (2011) 586-591.
Google Scholar
[28]
E.A. Brandes, Smithells Metals Reference Book, 6th ed., Butterworths, London, (1983).
Google Scholar
[29]
C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Catalytic growth of semiconducting In2O3 nanofibers, Adv. Mater. 13 (2001) 1330-1333.
DOI: 10.1002/1521-4095(200109)13:17<1330::aid-adma1330>3.0.co;2-6
Google Scholar
[30]
C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors, Journal of the American Chemical Society. 125 (2003) 11498-11499.
DOI: 10.1021/ja036990g
Google Scholar
[31]
K. W. Kolasinski, Catalytic growth of nanowires: vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth, Current Opinion in Solid State and Materials Science. 10 (2006) 182-191.
DOI: 10.1016/j.cossms.2007.03.002
Google Scholar
[32]
Q. Wan, M. Wei, D. Zhi, J. L. MacManus-Driscoll, M. G. Blamire, Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays, Advanced Materials. 18 (2006) 234-238.
DOI: 10.1002/adma.200501673
Google Scholar
[33]
Y. Hao, G. Meng, C. Ye, L. Zhang, Controlled synthesis of In2O3 octahedrons and nanowires, Crystal Growth & Design. 5 (2005) 1617-1621.
DOI: 10.1021/cg050103z
Google Scholar
[34]
Y. Yan, L. Zhou, Y. Zhang, J. Zhang, S. Hu, Large-scale synthesis of In2O3 nanocubes under nondynamic equilibrium model, Crystal Growth and Design. 8 (2008) 3285-3289.
DOI: 10.1021/cg800105h
Google Scholar