Effect of Carrier Gas Flow Rate on In2O3 Nanostructure Morphology and Growth Mechanism

Article Preview

Abstract:

The effect of carrier gas flow rate on the morphologies of In2O3 nanostructures was studied in a horizontal tube furnace via chemical vapor deposition method. Under low carrier gas flow rate, there appeared randomly oriented nanorods on the substrate, while the high carrier gas flow rate resulted in the nanocubes growth. The insufficient understanding of the role of the argon carrier gas flow rate motivated us to systematically research the transportation of the grown species during the growth processes and its effect on the nanostructure growth. COMSOL simulations were applied to evaluate the distribution of the growth species in the reactor versus the carrier gas flow rate, based on the geometry of our chemical vapor deposition system and a variety of actual growth conditions. The vapor species partial along with different carrier gas rate could cause the different super saturation condition, which is mainly to be responsible for the structural transformation. A combined VLS–VS mechanism was proposed to describe the growth of the Au-catalyzed In2O3 nanorods, while the nanocubes were governed by catalyst free VS growth mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-128

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Gao, R. Chen, D. Li, L. Jiang, J. Ye, X. Ma, X. Chen, Q. Xiong, H. Sun, T. Wu, UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires, Nanotechnology. 22 (2011) 195706-195716.

DOI: 10.1088/0957-4484/22/19/195706

Google Scholar

[2] Y. M. Chang, M. L. Lin, T. Y. Lai, H. Y. Lee, C. M. Lin, Y. C. S. Wu, J. Y. Juang, Field emission properties of gold nanoparticle-decorated ZnO nanopillars, ACS Applied Materials & Interfaces. 4 (2012) 6676-6682.

DOI: 10.1021/am301848a

Google Scholar

[3] Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies, Nanoscale. 3 (2011) 154-165.

DOI: 10.1039/c0nr00560f

Google Scholar

[4] C. Yan, H. Jiang, T. Zhao, C. Li, J. Ma, P. S. Lee, Binder-free Co(OH)2 nanoflake-ITO nanowire hetero structured electrodes for electrochemical energy storage with improved high-rate capabilities, Journal of Materials Chemistry. 21 (2011).

DOI: 10.1039/c0jm04442c

Google Scholar

[5] L. Zhang, S. Ge, Y. Zuo, B. Zhang, L. Xi, Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures, The Journal of Physical Chemistry C. 114 (2010) 7541-7547.

DOI: 10.1021/jp9065604

Google Scholar

[6] G. Shen, J. Xu, X. Wang, H. Huang, D. Chen, Growth of Directly Transferable In2O3 Nanowire Mats for Transparent Thin-film Transistor Applications, Advanced Materials. 23 (2011) 771-775.

DOI: 10.1002/adma.201003474

Google Scholar

[7] D. Bai, Z. Zhang, L. Li, F. Xu, K. Yu, Controllable synthesis and field emission properties of In2O3 nanostructures, Crystal Research and Technology. 45 (2010) 173-177.

DOI: 10.1002/crat.200900602

Google Scholar

[8] N. Singh, C. Yan, P. S. Lee, Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors, Sensors and Actuators B: Chemical. 150 (2010) 19-24.

DOI: 10.1016/j.snb.2010.07.051

Google Scholar

[9] T. Lim, S. Lee, M. Meyyappan, S. Ju, Control of semiconducting and metallic indium oxide nanowires, ACS nano. 5 (2011) 3917-3922.

DOI: 10.1021/nn200390d

Google Scholar

[10] N. Singh, T. Zhang, P. S. Lee, The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods, Nanotechnology. 20 (2009) 195605-195612.

DOI: 10.1088/0957-4484/20/19/195605

Google Scholar

[11] A. Qurashi, E. El-Maghraby, T. Yamazaki, Y. Shen, T. Kikuta, A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications, Journal of Alloys and Compounds. 481 (2009) L35-L39.

DOI: 10.1016/j.jallcom.2009.03.100

Google Scholar

[12] Y. Yan, Y. Zhang, H. Zeng, J. Zhang, X. Cao, L. Zhang, Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods, Nanotechnology. 18 (2007) 175601-175607.

DOI: 10.1088/0957-4484/18/17/175601

Google Scholar

[13] A. Menzel, R. Goldberg, G. Burshtein, V. Lumelsky, K. Subannajui, M. Zacharias, Y. Lifshitz, Role of carrier gas flow and species diffusion in nanowire growth from thermal CVD, The Journal of Physical Chemistry C. 116 (2012) 5524-5530.

DOI: 10.1021/jp212635w

Google Scholar

[14] K. Subannajui, N. Ramgir, R. Grimm, R. Michiels, Y. Yang, S. Müller, M. Zacharias, ZnO nanowire growth: a deeper understanding based on simulations and controlled oxygen experiments, Crystal Growth & Design. 10 (2010) 1585-1589.

DOI: 10.1021/cg901104j

Google Scholar

[15] H. Tian, J. Xu, Y. Tian, P. Deng, H. Wen, Morphological evolution of ZnO nanostructures: experimental and preliminary simulation studies, CrystEngComm. 14 (2012) 5539-5543.

DOI: 10.1039/c2ce25219h

Google Scholar

[16] H. Tian, J. Xu, Y. Tian, P. Deng, H. Wen, Effect of different O2/N2 flow rate on the size and yield of ZnO nanostructures, CrystEngComm. 15 (2013) 2544-2548.

DOI: 10.1039/c3ce26907h

Google Scholar

[17] COMSOL Multiphysics User's Guide, Version 3. 5a, COMSOL AB, Stockholm, Sweden, (2008).

Google Scholar

[18] RS. Wagner, WC. Ellis, Vapor–liquid–solid mechanism of single crystal growth, Applied Physics Letters. 4 (1964) 89-90.

DOI: 10.1063/1.1753975

Google Scholar

[19] Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures, The Journal of Physical Chemistry B. 109 (2005) 11204-11208.

DOI: 10.1021/jp050545l

Google Scholar

[20] Z. Dai, Z. Pan, Z. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials. 13 (2003) 9-24.

DOI: 10.1002/adfm.200390013

Google Scholar

[21] L. Cao, B. Garipcan, J. S. Atchison, C. Ni, B. Nabet, J. E. Instability and transport of metal catalyst in the growth of tapered silicon nanowires, Spanier, Nano letters. 6 (2006) 1852-1857.

DOI: 10.1021/nl060533r

Google Scholar

[22] C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, Zinc oxide nanostructures: morphology derivation and evolution, The Journal of Physical Chemistry B. 109 (2005) 19758-19765.

DOI: 10.1021/jp0509358

Google Scholar

[23] A. Menzel, K. Subannajui, R. Bakhda, Y. Wang, R. Thomann, M. Zacharias, Tuning the growth mechanism of ZnO nanowires by controlled carrier and reaction gas modulation in thermal CVD, The Journal of Physical Chemistry Letters. 3 (2012) 2815-2821.

DOI: 10.1021/jz301103s

Google Scholar

[24] D. S. Kim, R. Scholz, U. Gösele, Gold at the root or at the tip of ZnO nanowires: a model, M. Zacharias, Small. 4 (2008) 1615-1619.

DOI: 10.1002/smll.200800060

Google Scholar

[25] K. A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson, W. Seifert, Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires, Nano letters. 5 (2005) 761-764.

DOI: 10.1021/nl050301c

Google Scholar

[26] M. Kirkham, X. Wang, Z. L. Wang, R. L. Snyder, Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour-liquid-solid process, Nanotechnology. 18 (2007) 365304-365309.

DOI: 10.1088/0957-4484/18/36/365304

Google Scholar

[27] M. M. Brewster, X. Zhou, S. K. Lim, S. Gradecak, The growth and optical properties of ZnO nanowalls, The Journal of Physical Chemistry Letters. 2 (2011) 586-591.

Google Scholar

[28] E.A. Brandes, Smithells Metals Reference Book, 6th ed., Butterworths, London, (1983).

Google Scholar

[29] C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Catalytic growth of semiconducting In2O3 nanofibers, Adv. Mater. 13 (2001) 1330-1333.

DOI: 10.1002/1521-4095(200109)13:17<1330::aid-adma1330>3.0.co;2-6

Google Scholar

[30] C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors, Journal of the American Chemical Society. 125 (2003) 11498-11499.

DOI: 10.1021/ja036990g

Google Scholar

[31] K. W. Kolasinski, Catalytic growth of nanowires: vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth, Current Opinion in Solid State and Materials Science. 10 (2006) 182-191.

DOI: 10.1016/j.cossms.2007.03.002

Google Scholar

[32] Q. Wan, M. Wei, D. Zhi, J. L. MacManus-Driscoll, M. G. Blamire, Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays, Advanced Materials. 18 (2006) 234-238.

DOI: 10.1002/adma.200501673

Google Scholar

[33] Y. Hao, G. Meng, C. Ye, L. Zhang, Controlled synthesis of In2O3 octahedrons and nanowires, Crystal Growth & Design. 5 (2005) 1617-1621.

DOI: 10.1021/cg050103z

Google Scholar

[34] Y. Yan, L. Zhou, Y. Zhang, J. Zhang, S. Hu, Large-scale synthesis of In2O3 nanocubes under nondynamic equilibrium model, Crystal Growth and Design. 8 (2008) 3285-3289.

DOI: 10.1021/cg800105h

Google Scholar