Electrochemical Atomic Layer Deposition and Characterization of CdTe and PbTe Thin Films

Article Preview

Abstract:

This study reports the cycle chemistries involved in depositing CdTe and PbTe nanofilms. An automated thin-layer flow cell electrodeposition system was used to deposit the films at room temperature. Cyclic voltammetry was used to study the Underpotential Deposition (UPD) of the compounds. The monolayer/cycle deposition rate was also monitored in order to insure that the film is depositing at a uniform rate. The chemical composition of the films was characterized using Energy-Dispersive X-ray Spectroscopy (EDS) on a Scanning Electron Microscope (SEM). The crystallinity of the films was studied using a glancing angle X-ray diffractometer. The bandgaps of the films were calculated using measured optical reflection data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-39

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kuang, M. Di Vece, J. K Rath, L. van Dijk and R. Schropp, Elongated nanostructures for radial junction solar cells, Reports on Progress in Physics, vol. 76, pp.1-30, October (2013).

DOI: 10.1088/0034-4885/76/10/106502

Google Scholar

[2] H. Zogg, S. Blunier, T. Hoshino, C. Maissen, J. Masek, and A. N. Tiwari, Infrared-Sensor Arrays with 3-12 Mu-M Cutoff Wavelengths in Heteroepitaxial Narrow-Gap Semiconductors on Silicon Substrates, IEEE Transactions on Electron Devices, vol. 38, pp.1110-1117, May (1991).

DOI: 10.1109/16.78386

Google Scholar

[3] C. Boschetti, I. N. Bandeira, H. Closs, A. Y. Ueta, P. H. O. Rappl, P. Motisuke, and E. Abramof, Molecular beam epitaxial growth of PbTe and PbSnTe on Si(100) substrates for heterojunction infrared detectors, Infrared Physics & Technology, vol. 42, pp.91-99, Apr., (2001).

DOI: 10.1016/s1350-4495(01)00061-5

Google Scholar

[4] S. N. Chesnokov, D. E. Dolzhenko, I. I. Ivanchik, and D. R. Khokhlov, Far-Infrared High-Performance Lead Telluride-Based Photodetectors for Space-Born Applications, Infrared Physics & Technology, vol. 35, pp.23-31, Feb., (1994).

DOI: 10.1016/1350-4495(94)90038-8

Google Scholar

[5] F. J. DiSalvo, Thermoelectric cooling and power generation, Science, vol. 285, pp.703-706, Jul., (1999).

DOI: 10.1126/science.285.5428.703

Google Scholar

[6] G. D. Mahan and L. M. Woods, Multilayer thermionic refrigeration, Physical Review Letters, vol. 80, pp.4016-4019, May, (1998).

DOI: 10.1103/physrevlett.80.4016

Google Scholar

[7] T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, Thermoelectric quantum-dot superlattices with high ZT, Journal of Electronic Materials, vol. 29, pp. L1-L4, Jan., (2000).

DOI: 10.1007/s11664-000-0117-1

Google Scholar

[8] M. Arnold, D. Zimin, K. Alchalabi, and H. Zogg, Lead salt mid-IR photodetectors with narrow linewidth, Journal of Crystal Growth, vol. 278, pp.739-742, May (2005).

DOI: 10.1016/j.jcrysgro.2004.12.151

Google Scholar

[9] A. Jdanov, J. Pelleg, Z. Dashevsky, and R. Shneck, Growth and characterization of PbTe films by magnetron sputtering, Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 106, pp.89-94, Jan. (2004).

DOI: 10.1016/j.mseb.2003.09.026

Google Scholar

[10] A. I. Fedorenko, A. G. Fedorov, A. Y. Sipatov, and O. A. Mironov, The epitaxial growth of IV-VI heterostructures and superlattices on (001)Si, Thin Solid Films, vol. 267, pp.134-137, Oct., (1995).

DOI: 10.1016/0040-6090(95)06663-2

Google Scholar

[11] A. Jacquot, B. Lenoir, M. O. Boffoue, and A. Dauscher, Pulsed laser deposition of PbTe films on glass substrates, Applied Physics a-Materials Science & Processing, vol. 69, pp. S613-S615, Dec., (1999).

DOI: 10.1007/s003390051488

Google Scholar

[12] L.P. Colletti, B.H. Flowers, J.L. Stickney, Formation of Thin Films of Cd-Te, Cd-Se, and Cd-S by Electrochemical Atomic Layer Epitaxy, Journal of Electrochemical Society, vol. 145, pp.1442-1449, Oct. (1998).

DOI: 10.1149/1.1838502

Google Scholar

[13] P. Singh, A. Kabalan, Electrochemical Atomic Layer Deposition of a CdTe/PbTe Superlattice for the Absorber Layer of a Solar Cell, Proceedings of the 37th IEEE Photovoltaics Specialists Conference, ( Austin, TX, June 2012).

DOI: 10.1109/pvsc.2012.6318114

Google Scholar

[14] D. M. Kolb, Przasnys. M, and Gerische. H, Underpotential Deposition of Metals and Work Function Differences, Journal of Electroanalytical Chemistry, vol. 54, pp.25-38, (1974).

DOI: 10.1016/s0022-0728(74)80377-3

Google Scholar

[15] D. M. Kolb, Advances in Electrochemistry and Electrochemical Engineering. New York: John Wiley, (1978).

Google Scholar

[16] D. O. Banga, R. Vaidyanathan, X. H. Liang, J. L. Stickney, S. Cox, and U. Happeck, Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD), Electrochimica Acta, vol. 53, pp.6988-6994, Oct., (2008).

DOI: 10.1016/j.electacta.2008.02.108

Google Scholar

[17] T.E. Lister, J.L. Stickney, Formation of the first monolayer of CdSe on Au(111) by electrochemical ALE, Applied Surface Science, vol. 107, pp.153-160, Nov. (1996).

DOI: 10.1016/s0169-4332(96)00488-6

Google Scholar

[18] L.P. Colletti, J.L. Stickney, B. Flowers, Formation of Thin Films of CdTe, CdSe, and CdS by Electrochemical Atomic Layer Epitaxy, Journal of the Electrochemical Society, vol. 145, pp.1442-1449, Feb. (1998).

DOI: 10.1149/1.1838502

Google Scholar

[19] A. Jdanov, J. Pelleg, Z. Dashevsky, and R. Shneck, Growth and characterization of PbTe films by magnetron sputtering, Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 106, pp.89-94, Jan. (2004).

DOI: 10.1016/j.mseb.2003.09.026

Google Scholar

[20] R. V. Dhego O. Banga, Liang Xuehai, John L. Stickney, Stephen Cox, Uwe Happeck, Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD), Electrochimica Acta, vol. 53, p.6988–6994, (2008).

DOI: 10.1016/j.electacta.2008.02.108

Google Scholar