[1]
M. Abdollahifard, K. Faez, M. Pourfard, M. Abdollahi, A Histogram-based Segmentation Method for Characterization of Self-assembled Hexagonal Lattices, Applied Surface Science, 257 (2011) 10443-10450.
DOI: 10.1016/j.apsusc.2011.06.139
Google Scholar
[2]
M. H. Rahimi, S. Saramad, S.H. Tabaian, S.P. Marashi, A. Zolfaghari, M. Mohammadalinezhad, Study the Effect of Striping in Two-step Anodizing Process on Pore Arrangement of Nanoporous Alumina, Applied Science Journal, 256 (2009) 12-16.
DOI: 10.1016/j.apsusc.2009.04.155
Google Scholar
[3]
M. H. Rahimi, S.H. Tabaian, S.P. Marashi, M. Amiri, M.M. Dalaly, S. Saramad, A. Ramazani, A. Zolfaghari, The Effect of Aluminum Electropolishing on Nano-pores Arrangement in Anodic Alumina Membrains, J. Modern Physics, 22 (2008) 3267-3277.
DOI: 10.1142/s0217979208048206
Google Scholar
[4]
S. Massou, L. Masson, I. Ozerov, E. Moyen, K. Sengupta, M. Hanbucken, Large scale ordered topographical and chemical nano-features from anodic alumina templates, J. App. Surf. Sci, 256 (2009) 395–398.
DOI: 10.1016/j.apsusc.2009.05.096
Google Scholar
[5]
M. Pourfard, K. Faez, A Statistical Approach for the Characterization of Self-assembled Hexagonal Lattices, Applied Surface Science, 259 (2012) 124-134.
DOI: 10.1016/j.apsusc.2012.07.004
Google Scholar
[6]
M. Pourfard, K. Faez, S.H. Tabaian, Autocorrelation-Based Method for Characterization of the Self-Hexagonal Lattice, Physical Chemistry C, 117 (2013) 17225–17236.
DOI: 10.1021/jp401504q
Google Scholar
[7]
S. Pichler, M. I. Bodnarchuk, M. V. Kovalenko, M. Yarema, G. Springholz, D. V. Talapin, W. Heiss, Evaluation of Ordering in Single-Component and Binary Nanocrystal Superlattices by Analysis of Their Autocorrelation Functions, ACS Nano, 5 (2011).
DOI: 10.1021/nn200265e
Google Scholar
[8]
J. R. Borba, C. Brito, P. Migowski, T.B. Vale, D.A. Stariolo, S. r.R. Teixeira, A.F. Feil, Quantitative Characterization of Hexagonal Packings in Nanoporous Alumina Arrays_ A Case Study, The Journal of Physical Chemistry C, 246−251 (2013).
DOI: 10.1021/jp308542d
Google Scholar
[9]
D. C. Leitao, A. Apolinario, C.T. Sousa, J. Ventura, J.B. Sousa, M. Vazquez, J.P. Araujo, Nanoscale Topography: A Tool to Enhance Pore Order and Pore Size Distribution in Anodic Aluminum Oxide, The journal of Physical Chemistry C, 115 (2011).
DOI: 10.1021/jp202336j
Google Scholar
[10]
W. Khunsin, A. Amann, G. Kocher-Oberlehner, S. G. Romanov, S. Pullteap , H. Cheng Seat, E. P. O'Reilly, R. Zentel, C. M. Sotomayor Torres, Noise-Assisted Crystallization of Opal Films, Advanced Functional Materials, 22 (2012) 1812–1821.
DOI: 10.1002/adfm.201102605
Google Scholar
[11]
C. -W. Kwon, J. -W. Son, J. -H. Lee, H. -M. Kim, H. -W. Lee, K. -B. Kim, High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates, Advanced Functional Materials, 21 (2011) 1154-1159.
DOI: 10.1002/adfm.201002137
Google Scholar
[12]
H-J. Wang, Y. Cao, Y. -Y. Sun, K. Wang, C. Cao, L. Yang, Y. -D. Zhang, Z. Zheng, D. Li, J. -Y. Wang, Is there an optimal topographical surface in nanoscale affecting protein adsorption and cell behaviors?, Journal of Nanoparticle Research, 13 (2011).
DOI: 10.1007/s11051-011-0364-5
Google Scholar
[13]
H. -J. Wang, Y. -Y. Sun, Y. Cao, K. Wang, L. Yang, Y. -D. Zhang, Z. Zheng, Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II, Journal of Nanoparticle Research, 14 (2012) 1-10.
DOI: 10.1007/s11051-012-0862-0
Google Scholar
[14]
L. Ma, H. Niu, J. Cai, Y. Lian, W. Wu, X. Bai, W. Wang, Fabrication of one-dimensional multifunctional poly-Schiff base bars by anodic aluminum oxide template, Journal of Nanoparticle Research, 15 (2013) 1-9.
DOI: 10.1007/s11051-013-2135-y
Google Scholar
[15]
F. Gadot, A. Chelnokov, A.D. Lustrac, P. Crozat, J. -M. Lourtioz, D. Cassagne, C. Jouanin, Experimental demonstration of complete photonic band gap in graphite structure, Applied Physics Letters, 71 (1997) 1780 -1783.
DOI: 10.1063/1.119396
Google Scholar
[16]
Y. D. Wang, K.Y. Zang, S.J. Chua, S. Tripathy, P. Chen, C.G. Fonstad, Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template, Applied Physics Letter, 87 (2005).
DOI: 10.1063/1.2147716
Google Scholar
[17]
J. Mallet, K. Yu-Zhang, S. Matefi-Tempfli, M. Matefi-Tempfli, L. Piraux, Electrodeposited L10 CoxPt1-x nanowires, J. Physics D: Appl. Phys, 38 (2005) 909-919.
DOI: 10.1109/inec.2010.5424553
Google Scholar
[18]
J. M. Baik, M. Schierhorn, M. Moskovits, Fe Nanowires in Nanoporous Alumina: Geometric Effect versus Influence of Pore Walls, Journal of Physical Chemistry C, 112 (2008) 2252–2255.
DOI: 10.1021/jp711621v
Google Scholar
[19]
J. Li, C. Papadopoulos, M.J. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications, Applied Physics Letters, 75 (1999) 367-369.
DOI: 10.1063/1.124377
Google Scholar
[20]
K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller, Hexagonally ordered 100 nm period nickel nanowire arrays, Applied Physics Letters, 79 (2001) 1360-1362.
DOI: 10.1063/1.1399006
Google Scholar
[21]
O. Rabin, P.R. Herz, Y. -M. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus, Formation of Thick Porus Anodic Alumina Films and Nanowire Arrays on silicon Wafers and Galss, Advanced Functional Materials, 13 (2003) 631-638.
DOI: 10.1002/adfm.200304394
Google Scholar
[22]
H. Masuda, K. Fukuda, Fabrication of Highly Ordered Structures Using Anodic Porous Alumina, Science, 268 (1995) 1466-1476.
Google Scholar
[23]
S. Shingubara, Fabrication of nanomaterials using porous alumina templates, Journal of Nanoparticle Research, 5 (2003) 17-30.
DOI: 10.1023/a:1024479827507
Google Scholar
[24]
H. S. Virk, e. al., Fabrication of Copper Nanowires by Electrodeposition Using Anodic Alumina and Polymer Templates, Journal of Nano Research, 10 (2010) 63-67.
DOI: 10.4028/www.scientific.net/jnanor.10.63
Google Scholar
[25]
J. Choi, K. Nielsch, M. Reiche, R.B. Wehrspohn, U. Go¨sele, Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp, Journal of Vacuum Science and Technology, 21 (2003).
DOI: 10.1116/1.1556397
Google Scholar
[26]
J. F. Behnke, T. Sands, Bimodal Spatial Distribution of Pores in Anodically Oxidized Aluminum Thin Films, Journal of Applied Physics, 88 (2000) 6875 - 6880.
DOI: 10.1063/1.1321780
Google Scholar
[27]
A.C. Gâlcă, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema, Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry, Electrochem. Solid-State Lett, 6 (2003) B52-B54.
DOI: 10.1149/1.1615351
Google Scholar
[28]
L. Piraux, A. Encinas, L. Vila, S. Matefi-Tempfli, M. Matefi-Tempfli, M. Darques, F. Elhoussine, S. Michotte, Magnetic and superconducting nanowires, Nanoscience and nanotechnology, (2005) 372-389.
DOI: 10.1166/jnn.2005.062
Google Scholar
[29]
F. Li, L. Zhang, R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, J. Chem. Mater, 10 (1998) 2470-2480.
DOI: 10.1021/cm980163a
Google Scholar
[30]
K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule, J. Nano. Lett, 2 (2002) 677-680.
DOI: 10.1021/nl025537k
Google Scholar
[31]
S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Characterization of nanopores ordering in anodic alumina, J. Thin Solid Films, 516 (2008) 3735-3740.
DOI: 10.1016/j.tsf.2007.06.076
Google Scholar
[32]
R. Hillebrand, F. Muller, K. Schwirn, W. Lee, M. Steinhart, Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices, J. ACS Nano, (2008) 913-920.
DOI: 10.1021/nn700318v
Google Scholar
[33]
M. H. Rahimi, S.H. Tabaian, S.P.H. Marashi, S. Saramad, M. Arab, A. Hemasian, Heat treatment of aluminum in preparing porous anodic alumina templates, Micro & Nano Letters, 7 (2011) 125–129.
DOI: 10.1049/mnl.2011.0599
Google Scholar
[34]
A. Eftekhari, Nanostructured Materials in Electrochemistry, WILEY-VCH Verlag GmbH & Co. KGaA (2008).
Google Scholar
[35]
R. Szeliski, Computer Vision: Algorithms and Applications, Springer, (2010).
Google Scholar
[36]
A. Materka, M. Strzelecki, Texture Analysis methods- A review, in, Technical University of Lodz, Institute of Electronics, Cost B11 report, (1998).
Google Scholar
[37]
J. Wang, Z. Lin, Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential, Journal of Physical Chemistry C, 113 (2009) 4026–4030.
DOI: 10.1021/jp811201x
Google Scholar
[38]
W. H. Ryu, C.J. Park, H.S. Kwon, Synthesis of Highly Ordered TiO2 Nanotube in Malonic Acid Solution by Anodization, Journal of Nanoscience and Nanotechnology, 8 (2008) 1-4.
DOI: 10.1166/jnn.2008.1141
Google Scholar
[39]
A. Kumar, G. Pang, Defect Detection in Textured Materials Using Gabor Filters, IEEE Trans. Industrial Applications, 38 (2002) 425-440.
DOI: 10.1109/28.993164
Google Scholar
[40]
A. V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete Time Signal Processing, Second ed., Prentice Hall, (1999).
Google Scholar