[1]
H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles, J. Am. Chem. Soc., 130 (2008) 1818-1819.
DOI: 10.1021/ja078126k
Google Scholar
[2]
J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W. -P. Zhou, R.R. Adzic, Oxygen reduction on well-defined core− shell nanocatalysts: particle size, facet, and Pt shell thickness effects, J. Am. Chem. Soc., 131 (2009) 17298-17302.
DOI: 10.1021/ja9067645
Google Scholar
[3]
H.I. Karan, K. Sasaki, K. Kuttiyiel, C.A. Farberow, M. Mavrikakis, R.R. Adzic, Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction, ACS Catalysis, 2 (2012) 817-824.
DOI: 10.1021/cs200592x
Google Scholar
[4]
Y. Xing, Y. Cai, M.B. Vukmirovic, W. -P. Zhou, H. Karan, J.X. Wang, R.R. Adzic, Enhancing oxygen reduction reaction activity via Pd− Au alloy sublayer mediation of Pt monolayer electrocatalysts, The Journal of Physical Chemistry Letters, 1 (2010).
DOI: 10.1021/jz101297r
Google Scholar
[5]
K. Gong, D. Su, R.R. Adzic, Platinum-monolayer shell on AuNi0. 5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction, J. Am. Chem. Soc., 132 (2010) 14364-14366.
DOI: 10.1021/ja1063873
Google Scholar
[6]
Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen, Ni–Pt Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts: Effect of Pt Shell Coverage, J Phys Chem C, 115 (2011) 24073-24079.
DOI: 10.1021/jp207828n
Google Scholar
[7]
F. Lima, J. Zhang, M. Shao, K. Sasaki, M. Vukmirovic, E. Ticianelli, R. Adzic, Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions, J Phys Chem C, 111 (2007) 404-410.
DOI: 10.1021/jp065181r
Google Scholar
[8]
T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry, Electrochim. acta, 52 (2007) 5512-5516.
DOI: 10.1016/j.electacta.2007.02.041
Google Scholar
[9]
J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the Catalytic Activity of Platinum‐Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, Angewandte Chemie International Edition, 44 (2005) 2132-2135.
DOI: 10.1002/anie.200462335
Google Scholar
[10]
J. Zhang, Y. Mo, M. Vukmirovic, R. Klie, K. Sasaki, R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles, J Phys Chem B, 108 (2004) 10955-10964.
DOI: 10.1021/jp0379953
Google Scholar
[11]
J. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic, Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics, J. Am. Chem. Soc., 127 (2005) 12480-12481.
DOI: 10.1021/ja053695i
Google Scholar
[12]
A. Dickinson, L. Carrette, J. Collins, K. Friedrich, U. Stimming, Preparation of a Pt Ru/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. acta, 47 (2002) 3733-3739.
DOI: 10.1016/s0013-4686(02)00343-2
Google Scholar
[13]
S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review, Journal of Electroanalytical Chemistry, 461 (1999) 14-31.
DOI: 10.1016/s0022-0728(98)00197-1
Google Scholar
[14]
E. Taylor, E. Anderson, N. Vilambi, Preparation of High‐Platinum‐Utilization Gas Diffusion Electrodes for Proton‐Exchange‐Membrane Fuel Cells, J. Electrochem. Soc., 139 (1992) L45-L46.
DOI: 10.1149/1.2069439
Google Scholar
[15]
K.H. Choi, H.S. Kim, T.H. Lee, Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition, J. Power Sources, 75 (1998) 230-235.
DOI: 10.1016/s0378-7753(98)00116-5
Google Scholar
[16]
S.D. Thompson, L.R. Jordan, M. Forsyth, Platinum electrodeposition for polymer electrolyte membrane fuel cells, Electrochim. acta, 46 (2001) 1657-1663.
DOI: 10.1016/s0013-4686(00)00767-2
Google Scholar
[17]
R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, M. Muhler, PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation, Electrochim. acta, 54 (2009).
DOI: 10.1016/j.electacta.2009.02.073
Google Scholar
[18]
Z. Wei, S. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation, Journal of Electroanalytical Chemistry, 569 (2004) 23-33.
DOI: 10.1016/j.jelechem.2004.01.034
Google Scholar
[19]
F. Fouda-Onana, O. Savadogo, Study of O 2 and OH adsorption energies on Pd–Cu alloys surface with a quantum chemistry approach, Electrochim. acta, 54 (2009) 1769-1776.
DOI: 10.1016/j.electacta.2008.10.026
Google Scholar
[20]
L. Huang, E. -S. Lee, K. -B. Kim, Electrodeposition of monodisperse copper nanoparticles on highly oriented pyrolytic graphite electrode with modulation potential method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262 (2005).
DOI: 10.1016/j.colsurfa.2005.03.023
Google Scholar
[21]
M. Yaldagard, N. Seghatoleslami, M. Jahanshahi, Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell, Appl. Surf. Sci, 315 (2014).
DOI: 10.1016/j.apsusc.2014.07.137
Google Scholar
[22]
J. Guo, T. Tokimoto, R. Othman, P.R. Unwin, Formation of mesoscopic silver particles at micro-and nano-liquid/liquid interfaces, Electrochem. commun., 5 (2003) 1005-1010.
DOI: 10.1016/j.elecom.2003.09.012
Google Scholar
[23]
M. Schlesinger, M. Paunovic, Fundamentals of electrochemical deposition, Wiley, (2006).
Google Scholar
[24]
Z. Wei, Y. Feng, L. Li, M. Liao, Y. Fu, C. Sun, Z. Shao, P. Shen, Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells, J. Power Sources, 180 (2008) 84-91.
DOI: 10.1016/j.jpowsour.2008.01.086
Google Scholar
[25]
J.M. Sieben, V. Comignani, A.E. Alvarez, M.M. Duarte, Synthesis and characterization of Cu core Pt–Ru shell nanoparticles for the electro-oxidation of alcohols, Int. j. Hydrogen Energy, 39 (2014) 8667–8674.
DOI: 10.1016/j.ijhydene.2013.12.064
Google Scholar
[26]
A. Sarkar, A. Manthiram, Synthesis of Pt@ Cu core− shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J Phys Chem C, 114 (2010) 4725-4732.
DOI: 10.1021/jp908933r
Google Scholar
[27]
T. Shibata, B.A. Bunker, Z. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, Size-dependent spontaneous alloying of Au-Ag nanoparticles, J. Am. Chem. Soc., 124 (2002) 11989-11996.
DOI: 10.1021/ja026764r
Google Scholar
[28]
B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice hall Upper Saddle River, NJ, (2001).
Google Scholar
[29]
M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic, Platinum monolayer electrocatalysts for oxygen reduction, Electrochim. acta, 52 (2007) 2257-2263.
DOI: 10.1016/j.electacta.2006.05.062
Google Scholar
[30]
T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146 (1999) 3750-3756.
DOI: 10.1149/1.1392544
Google Scholar
[31]
J. Gavartin, M. Sarwar, D. Papageorgopoulos, D. Gunn, S. Garcia, A. Perlov, A. Krzystala, D.L. Ormsby, D. Thompsett, G. Goldbeck-Wood, Exploring Fuel Cell Cathode Materials: A High Throughput Calculation Approach, ECS Transactions, 25 (2009).
DOI: 10.1149/1.3210689
Google Scholar
[32]
I. Choi, S.H. Ahn, J.J. Kim, O.J. Kwon, Preparation of Pt shell–Pd core nanoparticle with electroless deposition of copper for polymer electrolyte membrane fuel cell, Applied Catalysis B: Environmental, 102 (2011) 608-613.
DOI: 10.1016/j.apcatb.2010.12.047
Google Scholar
[33]
S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying, J. Am. Chem. Soc., 129 (2007) 12624-12625.
DOI: 10.1021/ja0742784
Google Scholar
[34]
P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes, J Phys Chem C, 112 (2008) 2770-2778.
DOI: 10.1021/jp0776412
Google Scholar
[35]
P. Strasser, S. Koh, J. Greeley, Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis, Physical Chemistry Chemical Physics, 10 (2008) 3670-3683.
DOI: 10.1039/b803717e
Google Scholar
[36]
S. Koh, N. Hahn, C. Yu, P. Strasser, Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC, J. Electrochem. Soc., 155 (2008) B1281-B1288.
DOI: 10.1149/1.2988741
Google Scholar
[37]
R. Yang, J. Leisch, P. Strasser, M.F. Toney, Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction, chem. Maters., 22 (2010) 4712-4720.
DOI: 10.1021/cm101090p
Google Scholar
[38]
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts, Nature Chemistry, 2 (2010) 454-460.
DOI: 10.1038/nchem.623
Google Scholar
[39]
Q.T. Trinh, J. Yang, J.Y. Lee, M. Saeys, Computational and experimental study of the Volcano behavior of the oxygen reduction activity of PdM@ PdPt/C (M= Pt, Ni, Co, Fe, and Cr) core–shell electrocatalysts, Journal of Catalysis, 291 (2012) 26-35.
DOI: 10.1016/j.jcat.2012.04.001
Google Scholar
[40]
E. Horwood, Instrumental methods in Electrochemistry, Southampton Electrochemistry Group, University of Southampton, series in physical chemistry, (1985) 360.
DOI: 10.1002/zfch.19870270633
Google Scholar