Oxygen Reduction Reaction Activity Improvement in Cu/PtPd Nanocatalyst Based on Core-Shell Structured through Electrochemical Synthesis on Porous Gas Diffusion Electrodes in Polymer Electrolyte Membrane Fuel Cells

Article Preview

Abstract:

In this paper, a two-step method is developed for efficient preparation of Cu/Pt-Pd core-shell structured catalyst on Nafion-bonded carbon paper electrodes for a polymer electrolyte membrane fuel cell. Copper nanoparticles with diameter distribution of 80-160 nm are obtained by potential-modulation electrodeposition. In copper electrodeposition the charge-transfer step is fast and the rate of growth is controlled by the rate of mass transfer of copper ions to the growing centers. After the copper electrodeposition the replacement of Cu by PtPd occurs spontaneously by an irreversible redox process. The nature and composition of PtPd/Cu on pretreated carbon paper are characterized by field emission–scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy, respectively. The as prepared Cu/PtPd electrode is found in the form of core-shell structure with uniform dispersion on the surface with average nanoparticles of 41.5 nm diameter. Electrochemical activity of PtPd/Cu and conventional Pt/C on pretreated carbon paper electrodes towards oxygen reduction is studied by linear sweep voltammetry experiments. Low values of Tafel slope and free activation energy reveal that Cu/PtPd with core-shell structure shows greater electrochemical activity than conventional Pt/C catalyst. Electrochemical surface area (ECSA) results also show that Cu/PtPd with core-shell structure has greater stability than the Pt/C electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-80

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles, J. Am. Chem. Soc., 130 (2008) 1818-1819.

DOI: 10.1021/ja078126k

Google Scholar

[2] J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W. -P. Zhou, R.R. Adzic, Oxygen reduction on well-defined core− shell nanocatalysts: particle size, facet, and Pt shell thickness effects, J. Am. Chem. Soc., 131 (2009) 17298-17302.

DOI: 10.1021/ja9067645

Google Scholar

[3] H.I. Karan, K. Sasaki, K. Kuttiyiel, C.A. Farberow, M. Mavrikakis, R.R. Adzic, Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction, ACS Catalysis, 2 (2012) 817-824.

DOI: 10.1021/cs200592x

Google Scholar

[4] Y. Xing, Y. Cai, M.B. Vukmirovic, W. -P. Zhou, H. Karan, J.X. Wang, R.R. Adzic, Enhancing oxygen reduction reaction activity via Pd− Au alloy sublayer mediation of Pt monolayer electrocatalysts, The Journal of Physical Chemistry Letters, 1 (2010).

DOI: 10.1021/jz101297r

Google Scholar

[5] K. Gong, D. Su, R.R. Adzic, Platinum-monolayer shell on AuNi0. 5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction, J. Am. Chem. Soc., 132 (2010) 14364-14366.

DOI: 10.1021/ja1063873

Google Scholar

[6] Y. Chen, Z. Liang, F. Yang, Y. Liu, S. Chen, Ni–Pt Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts: Effect of Pt Shell Coverage, J Phys Chem C, 115 (2011) 24073-24079.

DOI: 10.1021/jp207828n

Google Scholar

[7] F. Lima, J. Zhang, M. Shao, K. Sasaki, M. Vukmirovic, E. Ticianelli, R. Adzic, Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions, J Phys Chem C, 111 (2007) 404-410.

DOI: 10.1021/jp065181r

Google Scholar

[8] T. Bligaard, J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry, Electrochim. acta, 52 (2007) 5512-5516.

DOI: 10.1016/j.electacta.2007.02.041

Google Scholar

[9] J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the Catalytic Activity of Platinum‐Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, Angewandte Chemie International Edition, 44 (2005) 2132-2135.

DOI: 10.1002/anie.200462335

Google Scholar

[10] J. Zhang, Y. Mo, M. Vukmirovic, R. Klie, K. Sasaki, R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles, J Phys Chem B, 108 (2004) 10955-10964.

DOI: 10.1021/jp0379953

Google Scholar

[11] J. Zhang, M.B. Vukmirovic, K. Sasaki, A.U. Nilekar, M. Mavrikakis, R.R. Adzic, Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics, J. Am. Chem. Soc., 127 (2005) 12480-12481.

DOI: 10.1021/ja053695i

Google Scholar

[12] A. Dickinson, L. Carrette, J. Collins, K. Friedrich, U. Stimming, Preparation of a Pt Ru/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. acta, 47 (2002) 3733-3739.

DOI: 10.1016/s0013-4686(02)00343-2

Google Scholar

[13] S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review, Journal of Electroanalytical Chemistry, 461 (1999) 14-31.

DOI: 10.1016/s0022-0728(98)00197-1

Google Scholar

[14] E. Taylor, E. Anderson, N. Vilambi, Preparation of High‐Platinum‐Utilization Gas Diffusion Electrodes for Proton‐Exchange‐Membrane Fuel Cells, J. Electrochem. Soc., 139 (1992) L45-L46.

DOI: 10.1149/1.2069439

Google Scholar

[15] K.H. Choi, H.S. Kim, T.H. Lee, Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition, J. Power Sources, 75 (1998) 230-235.

DOI: 10.1016/s0378-7753(98)00116-5

Google Scholar

[16] S.D. Thompson, L.R. Jordan, M. Forsyth, Platinum electrodeposition for polymer electrolyte membrane fuel cells, Electrochim. acta, 46 (2001) 1657-1663.

DOI: 10.1016/s0013-4686(00)00767-2

Google Scholar

[17] R. Chetty, S. Kundu, W. Xia, M. Bron, W. Schuhmann, V. Chirila, W. Brandl, T. Reinecke, M. Muhler, PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation, Electrochim. acta, 54 (2009).

DOI: 10.1016/j.electacta.2009.02.073

Google Scholar

[18] Z. Wei, S. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation, Journal of Electroanalytical Chemistry, 569 (2004) 23-33.

DOI: 10.1016/j.jelechem.2004.01.034

Google Scholar

[19] F. Fouda-Onana, O. Savadogo, Study of O 2 and OH adsorption energies on Pd–Cu alloys surface with a quantum chemistry approach, Electrochim. acta, 54 (2009) 1769-1776.

DOI: 10.1016/j.electacta.2008.10.026

Google Scholar

[20] L. Huang, E. -S. Lee, K. -B. Kim, Electrodeposition of monodisperse copper nanoparticles on highly oriented pyrolytic graphite electrode with modulation potential method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262 (2005).

DOI: 10.1016/j.colsurfa.2005.03.023

Google Scholar

[21] M. Yaldagard, N. Seghatoleslami, M. Jahanshahi, Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell, Appl. Surf. Sci, 315 (2014).

DOI: 10.1016/j.apsusc.2014.07.137

Google Scholar

[22] J. Guo, T. Tokimoto, R. Othman, P.R. Unwin, Formation of mesoscopic silver particles at micro-and nano-liquid/liquid interfaces, Electrochem. commun., 5 (2003) 1005-1010.

DOI: 10.1016/j.elecom.2003.09.012

Google Scholar

[23] M. Schlesinger, M. Paunovic, Fundamentals of electrochemical deposition, Wiley, (2006).

Google Scholar

[24] Z. Wei, Y. Feng, L. Li, M. Liao, Y. Fu, C. Sun, Z. Shao, P. Shen, Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells, J. Power Sources, 180 (2008) 84-91.

DOI: 10.1016/j.jpowsour.2008.01.086

Google Scholar

[25] J.M. Sieben, V. Comignani, A.E. Alvarez, M.M. Duarte, Synthesis and characterization of Cu core Pt–Ru shell nanoparticles for the electro-oxidation of alcohols, Int. j. Hydrogen Energy, 39 (2014) 8667–8674.

DOI: 10.1016/j.ijhydene.2013.12.064

Google Scholar

[26] A. Sarkar, A. Manthiram, Synthesis of Pt@ Cu core− shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J Phys Chem C, 114 (2010) 4725-4732.

DOI: 10.1021/jp908933r

Google Scholar

[27] T. Shibata, B.A. Bunker, Z. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, Size-dependent spontaneous alloying of Au-Ag nanoparticles, J. Am. Chem. Soc., 124 (2002) 11989-11996.

DOI: 10.1021/ja026764r

Google Scholar

[28] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice hall Upper Saddle River, NJ, (2001).

Google Scholar

[29] M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic, Platinum monolayer electrocatalysts for oxygen reduction, Electrochim. acta, 52 (2007) 2257-2263.

DOI: 10.1016/j.electacta.2006.05.062

Google Scholar

[30] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146 (1999) 3750-3756.

DOI: 10.1149/1.1392544

Google Scholar

[31] J. Gavartin, M. Sarwar, D. Papageorgopoulos, D. Gunn, S. Garcia, A. Perlov, A. Krzystala, D.L. Ormsby, D. Thompsett, G. Goldbeck-Wood, Exploring Fuel Cell Cathode Materials: A High Throughput Calculation Approach, ECS Transactions, 25 (2009).

DOI: 10.1149/1.3210689

Google Scholar

[32] I. Choi, S.H. Ahn, J.J. Kim, O.J. Kwon, Preparation of Pt shell–Pd core nanoparticle with electroless deposition of copper for polymer electrolyte membrane fuel cell, Applied Catalysis B: Environmental, 102 (2011) 608-613.

DOI: 10.1016/j.apcatb.2010.12.047

Google Scholar

[33] S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying, J. Am. Chem. Soc., 129 (2007) 12624-12625.

DOI: 10.1021/ja0742784

Google Scholar

[34] P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes, J Phys Chem C, 112 (2008) 2770-2778.

DOI: 10.1021/jp0776412

Google Scholar

[35] P. Strasser, S. Koh, J. Greeley, Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis, Physical Chemistry Chemical Physics, 10 (2008) 3670-3683.

DOI: 10.1039/b803717e

Google Scholar

[36] S. Koh, N. Hahn, C. Yu, P. Strasser, Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC, J. Electrochem. Soc., 155 (2008) B1281-B1288.

DOI: 10.1149/1.2988741

Google Scholar

[37] R. Yang, J. Leisch, P. Strasser, M.F. Toney, Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction, chem. Maters., 22 (2010) 4712-4720.

DOI: 10.1021/cm101090p

Google Scholar

[38] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts, Nature Chemistry, 2 (2010) 454-460.

DOI: 10.1038/nchem.623

Google Scholar

[39] Q.T. Trinh, J. Yang, J.Y. Lee, M. Saeys, Computational and experimental study of the Volcano behavior of the oxygen reduction activity of PdM@ PdPt/C (M= Pt, Ni, Co, Fe, and Cr) core–shell electrocatalysts, Journal of Catalysis, 291 (2012) 26-35.

DOI: 10.1016/j.jcat.2012.04.001

Google Scholar

[40] E. Horwood, Instrumental methods in Electrochemistry, Southampton Electrochemistry Group, University of Southampton, series in physical chemistry, (1985) 360.

DOI: 10.1002/zfch.19870270633

Google Scholar