[1]
B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-4431.
DOI: 10.1021/ja0299452
Google Scholar
[2]
N. Sanpo, J. Wang, C.C. Berndt, Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications, J. Nano Res. 15 (2013) 110-121.
DOI: 10.4028/www.scientific.net/jnanor.25.110
Google Scholar
[3]
R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates, Chem. Mater. 12 (2000) 2301-2305.
DOI: 10.1021/cm000166z
Google Scholar
[4]
H. Natter, R. Hempelmann, Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature and pH, J. Phys. Chem. 100 (1996) 19525-19532.
DOI: 10.1021/jp9617837
Google Scholar
[5]
C.Y. Wang, Y. Zhou, Y.R. Zhu, H.J. Liu, Z.Y. Chen, Preparation of metal or alloy sulfide nanoparticles by electrochemical deposition, Mater. Res. Bull. 35 (2000) 1463-1468.
DOI: 10.1016/s0025-5408(00)00342-1
Google Scholar
[6]
Tao Wang, D. -C Sun, Preparation and characterization of nanometer-scale powders ceria by electrochemical deposition method, Mater. Res. Bull. 43 (2008) 1754-1760.
DOI: 10.1016/j.materresbull.2007.07.008
Google Scholar
[7]
F. -D. Mai, C. -C. Yu , Y. -C. Liu, T. -C. Hsu, Y.H. Wue, New strategy to prepare platinum salts by electrochemical methods and subsequent synthesis of platinum nanoparticles, Mater. Res. Bull. 47 (2012) 167-171.
DOI: 10.1016/j.materresbull.2011.11.056
Google Scholar
[8]
M. Shamsipur, M. Roushni, S.M. Pourmortazavi, Electrochemical synthesis and characterization of zinc oxalate nanoparticles, Mater. Res. Bull. 48 (2013) 1275-1280.
DOI: 10.1016/j.materresbull.2012.12.032
Google Scholar
[9]
M.V. Mandke, H.M. Pathan, Electrochemical growth of copper nanoparticles: structural and optical properties, J. Electroanal. Chem. 686 (2012) 19-24.
DOI: 10.1016/j.jelechem.2012.09.004
Google Scholar
[10]
S.B. Kalidindi, U. Sanyal, B.R. Jagirdar, Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane, Phys. Chem. Chem. Phys. 10 (2008) 5870-5874.
DOI: 10.1039/b805726e
Google Scholar
[11]
S. D Pappas, P. Poulopoulos, V. Kapaklis, S. Grammatikopoulos, D. Trachylis, M. J. Velgakis, E. I. Meletis, C. Politis, Growth and experimental evidence of quantum confinement effects in Cu2O and CuO thin films, J. Nano Res. 15 (2011) 69-74.
DOI: 10.4028/www.scientific.net/jnanor.15.69
Google Scholar
[12]
X.W. Zheng, Controlling Synthesis of Copper Nanorods and Triangular Nanoplates, J. Nano Res. 4 (2008) 145-152.
Google Scholar
[13]
X. Hong, W. Guanzhong, Z. Wei, S. Xiaoshuang, W. Ying, Synthesis of sub-10 nm Cu2O nanowires by poly(vinyl pyrrolidone)-assisted electrodeposition, J. Phys. Chem. 113 (2009) 14172-14175.
DOI: 10.1021/jp9039786
Google Scholar
[14]
T.S. Ahmadi, Z.L. Wang, A. Henglein, M.A. El-Sayed, Cubic colloidal platinum nanoparticles, Am. Chem. Soc. 8 (1996) 1161-1163.
DOI: 10.1021/cm9601190
Google Scholar
[15]
X. Zhang, G. Wang, X. Liu, H. Wu, B. Fang, Copper dendrites: synthesis, mechanism discussion, and application in determination of l-tyrosine, Cryst. Growth Des. 8 (2008) 1430-1434.
DOI: 10.1021/cg7011028
Google Scholar
[16]
N.R. Jana, Z.L. Wang, T.K. Sau, T. Pal, Seed-mediated growth method to prepare cubic copper nanoparticles, Curr. Sci. 79 (2000) 1367-1370.
Google Scholar
[17]
H. Zhu, C. Zhang, Y. Yin, Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size, Nanotech. 16 (2005) 3079-3083.
DOI: 10.1088/0957-4484/16/12/059
Google Scholar
[18]
D. Mott, J. Galkowski, L. Wang, J. Luo, C.J. Zhong, Synthesis of size-controlled and shaped copper nanoparticles, Langmuir 23 (2007) 5740-5745.
DOI: 10.1021/la0635092
Google Scholar
[19]
F. Enders, A. Schweizer, The electrodeposition of copper on Au(111) and on HOPG from the 66/34 mol% aluminium chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt: an EC-STM study, Phys. Chem. Chem. Phys. 2 (2000) 5455-5462.
DOI: 10.1039/b006040m
Google Scholar
[20]
A. Tamilvanan, K. Balamurugan, K. Ponappa, B.K. Madhan, Copper nanoparticles: synthetic strategies, properties and multifunctional application, Inter. J. Nanosci. 13 (2014) 1430001-14300022.
DOI: 10.1142/s0219581x14300016
Google Scholar
[21]
L. Fotouhi, M. Rezaei, Electrochemical synthesis of copper sulfide nanoparticles, Microchim. Acta 167 (2009) 247-251.
DOI: 10.1007/s00604-009-0234-3
Google Scholar
[22]
K.G. Chandrappa, T.V. Venkatesha, Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles, J. Exp. Nanosci. 8 (2013) 516-532.
DOI: 10.1080/17458080.2011.597440
Google Scholar
[23]
X. Wu, H. Bai, J. Zhang, F. Chen, G. Shi, Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper, J. Phys. Chem. 109 (2005) 22836-22842.
DOI: 10.1021/jp054350p
Google Scholar
[24]
S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Electrosynthesis and characterization of copper oxalate nanoparticles, Syn. React. Inorg. Metal-Org. Nano-Metal Chem. 42 (2012) 746-751.
DOI: 10.1080/15533174.2011.615784
Google Scholar
[25]
A.M. Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ organic frameworks, Cryst. Growth Des. 12 (2012) 3489-3498.
DOI: 10.1021/cg300552w
Google Scholar
[26]
G.Q. Yuan, H. F Jiang, C. Lin, S.J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals, J. Cryst. Growth 303 (2007) 400-406.
DOI: 10.1016/j.jcrysgro.2006.12.047
Google Scholar
[27]
H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull. 41 (2006) 1310-1318.
DOI: 10.1016/j.materresbull.2006.01.004
Google Scholar
[28]
S.M. Pourmortazavi, I. Kohsari, S.S. Hajimirsadeghi, Electrosynthesis and thermal characterization of basic copper carbonate nanoparticles, Cent. Eur. J. Chem. 7 (2009) 74-78.
DOI: 10.2478/s11532-008-0094-4
Google Scholar
[29]
S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309-319.
DOI: 10.1021/ja01269a023
Google Scholar
[30]
E.P. Barret, L.G. Joyer, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373-380.
DOI: 10.1021/ja01145a126
Google Scholar
[31]
M.M. Benjamin, Water Chemistry, McGraw-Hill International Edition, (2002).
Google Scholar
[32]
S. Joseph, P.V. Kamath, Electrodeposition of Cu2O coatings on stainless steel substrates: Control over orientation and morphology, J. Electrochem. Soc. 154 (2007) 102-106.
Google Scholar
[33]
S. Joseph, P.V. Kamath, S. Upadhya, Electrochemical synthesis of oriented CuO coatings on stainless steel substrates: solution-mediated control over orientation, J. Electrochem. Soc. 156 (2009) 18-22.
DOI: 10.1149/1.3005959
Google Scholar
[34]
E. P. Serjeant, B. Dempsey, Ionization Constants of Organic Acids in Aqueous Solution, Pergamon, Oxford, (1979).
Google Scholar
[35]
D. -D. La, T. A. Nguyen, S. Lee, J. W. Kim, Y. S. Kim, A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays, App. Surface Sci. 257 (2011) 5705-5710.
DOI: 10.1016/j.apsusc.2011.01.078
Google Scholar
[36]
R. Mehdizadeh, M. Hasanzadeh, S. Sanati, L. A. Saghatforoush, Simple template-free solution route for the synthesis of Cu(OH)2 and CuO nanostructures and application for electrochemical determination three ß-blockers, J. Exp. Nanosci. 9 (2014).
DOI: 10.1080/17458080.2012.714479
Google Scholar
[37]
Z. Jia, L. Yue, Y. Zheng, Z. Xu, The convenient preparation of porous CuO via copper oxalate precursor, Mater. Res. Bull. 43 (2008) 2434-2440.
DOI: 10.1016/j.materresbull.2007.07.044
Google Scholar
[38]
M.Y. Li, W.S. Dong, C.L. Liu, Z. Liu, F.Q. Lin, Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires, J. Cryst. Growth 310 (2008) 4628-4634.
DOI: 10.1016/j.jcrysgro.2008.08.032
Google Scholar
[39]
W. Kang, F. Liu, Y. Su, D. Wangb, Q. Shen, The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances, Cryst. Eng. Comm. 13 (2011) 4174-4180.
DOI: 10.1039/c1ce05319a
Google Scholar