Synthesis and Characterization of Copper Nanoparticles by Electrochemical Method: Effect of pH

Article Preview

Abstract:

Herein, copper nanoparticles were synthesized using electrochemical method at pH 5, 6.5, 9.5 and 12.5 (coded as Cu5, Cu6.5, Cu9.5 and Cu12.5, respectively). Copper was used as electrode whereas 0.15 M oxalic acid in aqueous solution was used as an electrolyte. Effect of pH of the electrolyte solution on the morphological, structural and textural properties of prepared copper nonoparticles was studied. Prepared nanoparticles were characterized by X-ray crystallography, Field emission scanning electron microscope, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis and textural analysis. The morphology and sizes of the nanoparticles prepared varied with the initial pH of the solution. Sizes of synthesized Cu particles were found to be in the range of 20 nm to 7 μm. All the particles were mesoporous in nature. Cu5 was found to contain 67% copper hydroxide and 33% copper oxalate whereas Cu6.5, Cu9.5 and Cu12.5 essentially consisted of copper hydroxide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-92

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-4431.

DOI: 10.1021/ja0299452

Google Scholar

[2] N. Sanpo, J. Wang, C.C. Berndt, Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications, J. Nano Res. 15 (2013) 110-121.

DOI: 10.4028/www.scientific.net/jnanor.25.110

Google Scholar

[3] R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates, Chem. Mater. 12 (2000) 2301-2305.

DOI: 10.1021/cm000166z

Google Scholar

[4] H. Natter, R. Hempelmann, Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature and pH, J. Phys. Chem. 100 (1996) 19525-19532.

DOI: 10.1021/jp9617837

Google Scholar

[5] C.Y. Wang, Y. Zhou, Y.R. Zhu, H.J. Liu, Z.Y. Chen, Preparation of metal or alloy sulfide nanoparticles by electrochemical deposition, Mater. Res. Bull. 35 (2000) 1463-1468.

DOI: 10.1016/s0025-5408(00)00342-1

Google Scholar

[6] Tao Wang, D. -C Sun, Preparation and characterization of nanometer-scale powders ceria by electrochemical deposition method, Mater. Res. Bull. 43 (2008) 1754-1760.

DOI: 10.1016/j.materresbull.2007.07.008

Google Scholar

[7] F. -D. Mai, C. -C. Yu , Y. -C. Liu, T. -C. Hsu, Y.H. Wue, New strategy to prepare platinum salts by electrochemical methods and subsequent synthesis of platinum nanoparticles, Mater. Res. Bull. 47 (2012) 167-171.

DOI: 10.1016/j.materresbull.2011.11.056

Google Scholar

[8] M. Shamsipur, M. Roushni, S.M. Pourmortazavi, Electrochemical synthesis and characterization of zinc oxalate nanoparticles, Mater. Res. Bull. 48 (2013) 1275-1280.

DOI: 10.1016/j.materresbull.2012.12.032

Google Scholar

[9] M.V. Mandke, H.M. Pathan, Electrochemical growth of copper nanoparticles: structural and optical properties, J. Electroanal. Chem. 686 (2012) 19-24.

DOI: 10.1016/j.jelechem.2012.09.004

Google Scholar

[10] S.B. Kalidindi, U. Sanyal, B.R. Jagirdar, Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane, Phys. Chem. Chem. Phys. 10 (2008) 5870-5874.

DOI: 10.1039/b805726e

Google Scholar

[11] S. D Pappas, P. Poulopoulos, V. Kapaklis, S. Grammatikopoulos, D. Trachylis, M. J. Velgakis, E. I. Meletis, C. Politis, Growth and experimental evidence of quantum confinement effects in Cu2O and CuO thin films, J. Nano Res. 15 (2011) 69-74.

DOI: 10.4028/www.scientific.net/jnanor.15.69

Google Scholar

[12] X.W. Zheng, Controlling Synthesis of Copper Nanorods and Triangular Nanoplates, J. Nano Res. 4 (2008) 145-152.

Google Scholar

[13] X. Hong, W. Guanzhong, Z. Wei, S. Xiaoshuang, W. Ying, Synthesis of sub-10 nm Cu2O nanowires by poly(vinyl pyrrolidone)-assisted electrodeposition, J. Phys. Chem. 113 (2009) 14172-14175.

DOI: 10.1021/jp9039786

Google Scholar

[14] T.S. Ahmadi, Z.L. Wang, A. Henglein, M.A. El-Sayed, Cubic colloidal platinum nanoparticles, Am. Chem. Soc. 8 (1996) 1161-1163.

DOI: 10.1021/cm9601190

Google Scholar

[15] X. Zhang, G. Wang, X. Liu, H. Wu, B. Fang, Copper dendrites: synthesis, mechanism discussion, and application in determination of l-tyrosine, Cryst. Growth Des. 8 (2008) 1430-1434.

DOI: 10.1021/cg7011028

Google Scholar

[16] N.R. Jana, Z.L. Wang, T.K. Sau, T. Pal, Seed-mediated growth method to prepare cubic copper nanoparticles, Curr. Sci. 79 (2000) 1367-1370.

Google Scholar

[17] H. Zhu, C. Zhang, Y. Yin, Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size, Nanotech. 16 (2005) 3079-3083.

DOI: 10.1088/0957-4484/16/12/059

Google Scholar

[18] D. Mott, J. Galkowski, L. Wang, J. Luo, C.J. Zhong, Synthesis of size-controlled and shaped copper nanoparticles, Langmuir 23 (2007) 5740-5745.

DOI: 10.1021/la0635092

Google Scholar

[19] F. Enders, A. Schweizer, The electrodeposition of copper on Au(111) and on HOPG from the 66/34 mol% aluminium chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt: an EC-STM study, Phys. Chem. Chem. Phys. 2 (2000) 5455-5462.

DOI: 10.1039/b006040m

Google Scholar

[20] A. Tamilvanan, K. Balamurugan, K. Ponappa, B.K. Madhan, Copper nanoparticles: synthetic strategies, properties and multifunctional application, Inter. J. Nanosci. 13 (2014) 1430001-14300022.

DOI: 10.1142/s0219581x14300016

Google Scholar

[21] L. Fotouhi, M. Rezaei, Electrochemical synthesis of copper sulfide nanoparticles, Microchim. Acta 167 (2009) 247-251.

DOI: 10.1007/s00604-009-0234-3

Google Scholar

[22] K.G. Chandrappa, T.V. Venkatesha, Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles, J. Exp. Nanosci. 8 (2013) 516-532.

DOI: 10.1080/17458080.2011.597440

Google Scholar

[23] X. Wu, H. Bai, J. Zhang, F. Chen, G. Shi, Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper, J. Phys. Chem. 109 (2005) 22836-22842.

DOI: 10.1021/jp054350p

Google Scholar

[24] S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Electrosynthesis and characterization of copper oxalate nanoparticles, Syn. React. Inorg. Metal-Org. Nano-Metal Chem. 42 (2012) 746-751.

DOI: 10.1080/15533174.2011.615784

Google Scholar

[25] A.M. Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ organic frameworks, Cryst. Growth Des. 12 (2012) 3489-3498.

DOI: 10.1021/cg300552w

Google Scholar

[26] G.Q. Yuan, H. F Jiang, C. Lin, S.J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals, J. Cryst. Growth 303 (2007) 400-406.

DOI: 10.1016/j.jcrysgro.2006.12.047

Google Scholar

[27] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull. 41 (2006) 1310-1318.

DOI: 10.1016/j.materresbull.2006.01.004

Google Scholar

[28] S.M. Pourmortazavi, I. Kohsari, S.S. Hajimirsadeghi, Electrosynthesis and thermal characterization of basic copper carbonate nanoparticles, Cent. Eur. J. Chem. 7 (2009) 74-78.

DOI: 10.2478/s11532-008-0094-4

Google Scholar

[29] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309-319.

DOI: 10.1021/ja01269a023

Google Scholar

[30] E.P. Barret, L.G. Joyer, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373-380.

DOI: 10.1021/ja01145a126

Google Scholar

[31] M.M. Benjamin, Water Chemistry, McGraw-Hill International Edition, (2002).

Google Scholar

[32] S. Joseph, P.V. Kamath, Electrodeposition of Cu2O coatings on stainless steel substrates: Control over orientation and morphology, J. Electrochem. Soc. 154 (2007) 102-106.

Google Scholar

[33] S. Joseph, P.V. Kamath, S. Upadhya, Electrochemical synthesis of oriented CuO coatings on stainless steel substrates: solution-mediated control over orientation, J. Electrochem. Soc. 156 (2009) 18-22.

DOI: 10.1149/1.3005959

Google Scholar

[34] E. P. Serjeant, B. Dempsey, Ionization Constants of Organic Acids in Aqueous Solution, Pergamon, Oxford, (1979).

Google Scholar

[35] D. -D. La, T. A. Nguyen, S. Lee, J. W. Kim, Y. S. Kim, A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays, App. Surface Sci. 257 (2011) 5705-5710.

DOI: 10.1016/j.apsusc.2011.01.078

Google Scholar

[36] R. Mehdizadeh, M. Hasanzadeh, S. Sanati, L. A. Saghatforoush, Simple template-free solution route for the synthesis of Cu(OH)2 and CuO nanostructures and application for electrochemical determination three ß-blockers, J. Exp. Nanosci. 9 (2014).

DOI: 10.1080/17458080.2012.714479

Google Scholar

[37] Z. Jia, L. Yue, Y. Zheng, Z. Xu, The convenient preparation of porous CuO via copper oxalate precursor, Mater. Res. Bull. 43 (2008) 2434-2440.

DOI: 10.1016/j.materresbull.2007.07.044

Google Scholar

[38] M.Y. Li, W.S. Dong, C.L. Liu, Z. Liu, F.Q. Lin, Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires, J. Cryst. Growth 310 (2008) 4628-4634.

DOI: 10.1016/j.jcrysgro.2008.08.032

Google Scholar

[39] W. Kang, F. Liu, Y. Su, D. Wangb, Q. Shen, The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances, Cryst. Eng. Comm. 13 (2011) 4174-4180.

DOI: 10.1039/c1ce05319a

Google Scholar