A Comparison of Magnetometry and Relaxometry Measures of Magnetic Nanoparticles Deposited in Biological Samples

Article Preview

Abstract:

The Alternating Gradient Field Magnetometer (AGFM) is an instrument whose high sensitivity (10-8 emu) allows the detection of small amounts of magnetic nanoparticles (MNPs) with high accuracy. Over the last few years, different magnetic techniques have been used for in vitro measurements of magnetic nanostructures inside biological tissues. However, in vivo studies about their distribution within the body are very scarce because their dispersion, after being delivered, reduces their magnetic signal and hinders detection. In this paper we compare the longitudinal relaxation time (T1) and magnetization measurements in mice's biological tissues for the tracking of MNPs after of an injection of iron oxide nanoparticles. Furthermore, we have correlated the AGFM data with Fast Field Cycling NMR Relaxometry (FFCNMR Relaxometry) measurements with histological analysis. The results have demonstrated that these techniques are useful for detecting minute amounts of MNPs in excised organs after in-vivo comparable to other more conventional techniques for the measurement of MNPs biodistribution and clearance. Details about the preparation of the in vivo samples, measurement protocol and statistical data processing are given.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl Phys 36 (2003) R167.

DOI: 10.1088/0022-3727/36/13/201

Google Scholar

[2] S.S. Agasti, S. Rana, M.H. Park, C.K. Kim, C.C. You, V.M. Rotello, Nanoparticles for detection and diagnosis, Adv. Drug. Deliv. Rev. 62 (2010) 316–328.

DOI: 10.1016/j.addr.2009.11.004

Google Scholar

[3] O. Veiseh, J.W. Gunn, M.Q. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug. Deliv. Rev. 62 (2010) 284–304.

DOI: 10.1016/j.addr.2009.11.002

Google Scholar

[4] C.F.D. Chan, B.K. Dmitri, Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, J. Magn. Magn. Mater. 122 (1993) 374-378.

DOI: 10.1016/0304-8853(93)91113-l

Google Scholar

[5] Z. Guandong, L. Yifeng, I. Baker, Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia, Materials Science and Engineering: C 30 (2010) 92-97.

DOI: 10.1016/j.msec.2009.09.003

Google Scholar

[6] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. Vonrechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483–496.

DOI: 10.1016/j.jmmm.2005.01.064

Google Scholar

[7] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995–4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[8] J.P.M. Almeida, A.L. Chen, A. Foster, R. Drezek, In vivo biodistribution of nanoparticles, Nanomedicine 6 (2011) 815-835.

DOI: 10.2217/nnm.11.79

Google Scholar

[9] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem. 14 (2004) 2161-2175.

DOI: 10.1039/b402025a

Google Scholar

[10] L.M. Lacava, Z.G.M. Lacava, M.F. Da Silva, O. Silva, S.B. Chaves, R.B. Azevedo, F. Pelegrini, C. Gansau, N. Buske, D. Sabolovic, Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice, Biophys. J. 80 (2001).

DOI: 10.1016/s0006-3495(01)76217-0

Google Scholar

[11] C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro, Biomaterials 24 (2003) 4551-4557.

DOI: 10.1016/s0142-9612(03)00237-0

Google Scholar

[12] A.K. Gupta, A.S. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496.

DOI: 10.1023/b:jmsm.0000021126.32934.20

Google Scholar

[13] A.F. Thunemann, D. Schutt, L. Kaufner, U. Pison, H. Mohwald, Maghemite Nanoparticles Protectively Coated with Poly (ethylene imine) and Poly (ethylene oxide)-b lock-poly (glutamic acid), Langmuir 22 (2006) 2351-2357.

DOI: 10.1021/la052990d

Google Scholar

[14] C. Chouly, D. Pouliquen, I. Lucet, J.J. Jeune, P. Pellet, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsulation 13 (1996) 245-255.

DOI: 10.3109/02652049609026013

Google Scholar

[15] V.S.W. Chan, Nanomedicine: an unresolved regulatory issue, Regulatory Toxicology and Pharmacoogy 46 (2006) 218-224.

DOI: 10.1016/j.yrtph.2006.04.009

Google Scholar

[16] G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environmental Health Perspectives 113 (2005) 823-839.

DOI: 10.1289/ehp.7339

Google Scholar

[17] D. Hautot, Q.A. Pankhurst, J. Dobson, Superconducting quantum interference device measurements of dilute magnetic materials in biological samples, Review of Scientific Instruments 76 (2005) 045101-045101-4.

DOI: 10.1063/1.1868272

Google Scholar

[18] M.K. Jaiswal, M. Gogoi, H.D. Sarma, R. Banerjee, D. Bahadur, Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models, Biomaterials Science 2 (2013) 370-380.

DOI: 10.1039/c3bm60225g

Google Scholar

[19] E.K. Schlachter, H.R. Widmer, A. Bregy, T.L. Weitzel, I. Vajtai, N. Corazza, V.J. Bernau, T. Weitzel, P. Mordasini, J. Slotboom, G. Herrmann, S. Bogni, H. Hofmann, M. Frenz, M. Reinert, Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study, Int. J. Nanomedicine 6 (2011).

DOI: 10.2147/ijn.s23638

Google Scholar

[20] C.D. Graham, High-sensitivity magnetization measurements, J. Mater. Sci. Technol. 16 (2000) 97-101.

Google Scholar

[21] T. Yardeni, M. Eckhaus, H.D. Morris, M. Huizing, S. Hoogstraten-Miller, Retro-orbital injections in mice, Lab. Anim. 40 (2011) 155-160.

DOI: 10.1038/laban0511-155

Google Scholar

[22] J. Zhuang, K. Fan, L. Gao, D. Lu, J. Feng, D. Yang, N. Gu, Y. Zhang, M. Liang, X. Yan, Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity, Mol. Pharm. 9 (2012) 1983-(1989).

DOI: 10.1021/mp300033a

Google Scholar

[23] J.W. Harrell, Effect of AC gradient field on magnetic measurements with an alternating gradient magnetometer, Journal of Magnetism and Magnetic Materials 205 (1999) 121-129.

DOI: 10.1016/s0304-8853(99)00487-4

Google Scholar

[24] S. Prijic, G. Sersa, Magnetic nanoparticles as targeted delivery systems in oncology, Radiology and oncology 45 (2011) 1-16.

DOI: 10.2478/v10019-011-0001-z

Google Scholar

[25] C. Chouly, D. Pouliquen, I. Lucet, J.J.  Jeune, P. Jallet, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsul. 13 (1996) 245-255.

DOI: 10.3109/02652049609026013

Google Scholar

[26] L.M. Lavaca, Z.G.M. Lacava, R.B. Azevedo, S.B. Chaves, V.A.P. Garcia, O. Silva, F. Pelegrini, N. Buske, C. Gansau, M.F. Da Silva, Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice, J. Magn. Magn. Mater. 252 (2002).

DOI: 10.1016/s0304-8853(02)00654-6

Google Scholar

[27] T.K. Jain, M.K. Reddy, M.A. Morales, D.L. Leslie-Pelecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats, Molecular pharmaceutics 5 (2008) 316-327.

DOI: 10.1021/mp7001285

Google Scholar

[28] L. Gu, R.H. Fang, M.J. Sailor, J.H. Park, In vivo clearance and toxicity of monodisperse iron oxide nanocrystals, ACS nano 6 (2012) 4947-4954.

DOI: 10.1021/nn300456z

Google Scholar

[29] M.K. Jaiswal, M. Gogoi, H.D. Sarma, R. Banerjee, D. Bahadur, Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models, Biomaterials Science 2 (2014) 370-380.

DOI: 10.1039/c3bm60225g

Google Scholar