Nanostructured Metal Films Formed onto Porous Silicon Template

Article Preview

Abstract:

The review reports on the results of our research work on nanostructured metal films onto porous silicon. Principal steps of the techniques allowing fabrication of metal films completely inheriting morphological pattern of different types of porous silicon are presented. It is shown, that giving of the nanostructured pattern to metal films by means of porous silicon template opens their new structural, optical, mechanical and electrical properties, which can be successfully applied in nanoelectronics and biomedicine, particularly including devices based on superconductivity effect, SERS analysis with picomolar sensitivity and transdermal drug delivery by electroporation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-255

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Herino, Nanocomposite materials from porous silicon, Materials Science and Engineering: B 69 (2000) 70-76.

Google Scholar

[2] H. Bandarenka, M. Balucani, R. Crescenzi, A. Ferrari, Formation of composite nanostructures by corrosive deposition of copper into porous silicon, Superlattices and Microstructures 44 (2008) 583-587.

DOI: 10.1016/j.spmi.2007.11.004

Google Scholar

[3] E.B. Chubenko, A.A. Klyshko, V.A. Petrovich, V.P. Bondarenko, Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions, Thin Solid Films 517 (2009) 5981-5987.

DOI: 10.1016/j.tsf.2009.03.134

Google Scholar

[4] P. Granitzer, K. Rumpf, Porous Silicon - A Versatile Host Material, Materials 3 (2010) 943-998.

DOI: 10.3390/ma3020943

Google Scholar

[5] A. Dolgiy, S.V. Redko, H. Bandarenka, S.L. Prischepa, K. Yanushkevich, P. Nenzi, M. Balucani, V. Bondarenko, Electrochemical Deposition and Characterization of Ni in Mesoporous Silicon, J. Electrochem. Soc. 159 (2012) D623-D627.

DOI: 10.1149/2.050210jes

Google Scholar

[6] S.L. Prischepa, A.L. Dolgiy, H.V. Bandarenka, V.P. Bondarenko, K.I. Yanushkevich, V.G. Bayev, A.A. Maximenko, Yu. A. Fedotova, A. Zarzycki, Y. Zabila, Synthesis and Properties of Ni Nanowires in Porous Silicon Templates, in Nanowires: Synthesis, Electrical Properties and Uses in Biological Systems (ed. Luke J. Wilson), Nova Science Publ. Inc., 2014, pp.89-128.

DOI: 10.1016/j.tsf.2013.01.049

Google Scholar

[7] L. Canham, Handbook of Porous Silicon, Springer International Publishing Switzerland, (2014).

Google Scholar

[8] Yu. Panarin, S. Terekhov, K. Kholostov, V. Bondarenko, SERS-active substrates based on n-type porous silicon, Appl. Surf. Sci. 256 (2010) 6969-6976.

DOI: 10.1016/j.apsusc.2010.05.008

Google Scholar

[9] H. Bandarenka, S. Redko, A. Smirnov, A. Panarin, S. Terekhov, P. Nenzi, M. Balucani, V. Bondarenko, Nanostructures formed by displacement of porous silicon with copper: from nanoparticles to porous membranes, Nanoscale Res. Lett. 7 (2012) 477-486.

DOI: 10.1186/1556-276x-7-477

Google Scholar

[10] C. Cirillo, M. Trezza, F. Chiarella, A. Vecchione, V. P. Bondarenko, S.L. Prischepa, C.  Attanasio, Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates, Appl. Phys. Lett. 101 (2012) 172601-5.

DOI: 10.1063/1.4764066

Google Scholar

[11] A. Dolgyi, S. Redko, H. Bandarenka, A. Shapel, V. Bondarenko, Beta-battery based on 63Ni/macroporous silicon, ECS Meeting Abstracts, Honolulu PRiME 2012, 7-12 October 2012 Honolulu, Hawaii, 359.

DOI: 10.1149/ma2012-02/5/359

Google Scholar

[12] H. Bandarenka, K. Artsemyeva, S. Redko, A. Panarin, S. Terekhov, V. Bondarenko, Effect of swirl-like resistivity striations in n+-type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates, Phys. Status Solidi C 10 (2013).

DOI: 10.1002/pssc.201200731

Google Scholar

[13] H. Bandarenka, S.L. Prischepa, R. Fittipaldi, A. Vecchione, P. Nenzi, M. Balucani, V. Bondarenko, Comparative study of initial stages of copper immersion deposition on bulk and porous silicon, Nanoscale Res. Lett. 8 (2013) 85-92.

DOI: 10.1186/1556-276x-8-85

Google Scholar

[14] C. Cirillo, S. Prischepa, M. Trezza, V. Bondarenko, C. Attanasio, Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates, Nanotechnology 25 (2014) 425205-14.

DOI: 10.1088/0957-4484/25/42/425205

Google Scholar

[15] K. Artsemyeva, A. Dolgiy, H. Bandarenka, A. Panarin, I. Khodasevich, S. Terekhov, V. Bondarenko, Fabrication of SERS-active Substrates by Electrochemical and Electroless Deposition of Metals in Macroporous Silicon, ECS Transactions 53 (2013).

DOI: 10.1149/05311.0085ecst

Google Scholar

[16] K. Girel, H. Bandarenka, L. Dolgyi, Deposition of Silver Dendrites on Porous Silicon for Fabrication of SERS-active Substrates, in Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2015, pp.600-603.

DOI: 10.1142/9789814696524_0146

Google Scholar

[17] P. Allongue, Porous Silicon Formation Mechanisms, in Properties of Porous Silicon, INSPEC, London, 1997, pp.3-11.

Google Scholar

[18] R. Herino, Pore Size Distribution in Porous Silicon, in Properties of Porous Silicon, INSPEC, London, 1997, pp.89-96.

Google Scholar

[19] N.I. Kargin, A.O. Sultanov, A.V. Bondarenko, V.P. Bondarenko, S.V. Red'ko, A.S. Ionov, Formation and Structure of Mesoporous Silicon, Russian Microelectronics, 43, 8 (2014) 531-535.

DOI: 10.1134/s106373971408006x

Google Scholar

[20] A. Loni, Porous Silicon Formation by Anodization, in Handbook of Porous Silicon, Springer International Publishing Switzerland, 2014, pp.11-22.

DOI: 10.1007/978-3-319-05744-6_2

Google Scholar

[21] A. Yu. Panarin, K.V. Girel, H.V. Bandarenka, I.A. Khodasevich, V.P. Bondarenko, S.N. Terekhov, Formation of Silver Nanostructures on Porous Silicon and Review of their Application, Proceedings of the 2nd International Conference on Modern Applications of Nanotechnology, Minsk, Belarus, 6-8 May 2015, S306.

DOI: 10.1186/s11671-016-1473-y

Google Scholar

[22] A.V. Bondarenko, Chemical corrosive deposition of copper on porous silicon, in Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2005, pp.435-438.

DOI: 10.1142/9789812701947_0099

Google Scholar

[23] H. Bandarenka, A. Shapel, M. Balucani, Cu-Si nanocomposites based on porous silicon matrix, Solid State Phenomena 151 (2009) 222–226.

DOI: 10.4028/www.scientific.net/ssp.151.222

Google Scholar

[24] H. Bandarenka, S. Redko, P. Nenzi, M. Balucani, V. Bondarenko, Optimization of chemical displacement deposition of copper on porous silicon, J. Nanosci. Nanotechnol. 12 (2012) 8725-8731.

DOI: 10.1166/jnn.2012.6470

Google Scholar

[25] H. Bandarenka, V. Tsubulskii, M. Balucani, V.P. Bondarenko, Chemical resistance of mesoporous silicon under immersion deposition of copper, in Materials of the 9th International Conference on Porous Semiconductors – Science and Technology, 9-14 March, 2014, Alicante, Spain, Craficas Cervantes, C.B., 2014, pp.400-401.

Google Scholar

[26] A. Dolgiy, H. Bandarenka, V. Petrovich. Influence of Si conductivity type on immersion deposition of Cu films on porous Si, in Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2015, pp.280-283.

DOI: 10.1142/9789814696524_0069

Google Scholar

[27] K.Y. Arutyunov, D.S. Golubev, A. D. Zaikin, Superconductivity in one dimension, Phys. Rep. 464 (2008) 1-70.

DOI: 10.1016/j.physrep.2008.04.009

Google Scholar

[28] A. Bezryadin, Quantum suppression of superconductivity in nanowires, J. Phys.: Condens. Matter 20 (2008) 043202-18.

DOI: 10.1088/0953-8984/20/04/043202

Google Scholar

[29] O.V. Astafiev, L.B. Ioffe, S. Kafanov, Yu.A. Pashkin, K. Yu. Arutyunov, D. Shahar, O. Cohen, J.S. Tsai, Coherent quantum phase slip, Nature, 484 (2012) 355-358.

DOI: 10.1038/nature10930

Google Scholar

[30] J. Ku, V. Manucharyan, A. Bezryadin, Superconducting nanowires as nonlinear inductive elements for qubits, Phys. Rev. B 82 (2010) 134518-134528.

DOI: 10.1103/physrevb.82.134518

Google Scholar

[31] J. E. Mooij, Yu. V. Nazarov, Superconducting nanowires as quantum phase-slip junctions, Nat. Phys. 2 (2006) 169-172.

DOI: 10.1038/nphys234

Google Scholar

[32] N. Giordano, Dissipation in a one-dimensional superconductor: Evidence for macroscopic quantum tunneling, Phys. Rev. B 41, 10 (1990) 6350-6365.

DOI: 10.1103/physrevb.41.6350

Google Scholar

[33] A. T. Bollinger, A. Rogachev, M. Remeika, A. Bezryadin, Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires, Phys. Rev. B 69 (2004) 180503-06.

DOI: 10.1103/physrevb.69.180503

Google Scholar

[34] R.S. Newbower, M.R. Beasley, M. Tinkham, Fluctuation Effects on the Superconducting Transition of Tin Whisker Crystals, Phys. Rev. B 5 (1972) 864-868.

DOI: 10.1103/physrevb.5.864

Google Scholar

[35] J. Wang, X. -C. Ma, L. Lu, A. -Z. Jin, C. -Z. Gu, X. C. Xie, J. -F. Jia, X. Chen, Q. -K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett. 92, 233119-21 (2008).

DOI: 10.1063/1.2945280

Google Scholar

[36] A. Bezryadin, C. N. Lau, and M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires, Nature 404 (2000) 971-974.

DOI: 10.1038/35010060

Google Scholar

[37] D.S. Hopkins, D. Pekker, P.M. Goldbart, A. Bezryadin, Quantum interference device made by DNA templating of superconducting nanowires, Science 308 (2005) 1762-1765.

DOI: 10.1126/science.1111307

Google Scholar

[38] A. Bezryadin, P.M. Goldbart, Superconducting Nanowires Fabricated Using Molecular Templates, Adv. Mater. 22 (2010) 1111-1121.

DOI: 10.1002/adma.200904353

Google Scholar

[39] S. Michotte, L. Piraux, S. Dubois, F. Pailloux, G. Stenuit, J. Govaerts, Superconducting properties of lead nanowires arrays, Physica C 377 (2002) 267-276.

DOI: 10.1016/s0921-4534(01)01306-5

Google Scholar

[40] Q. Luo, X. Q. Zeng, M. E. Miszczak, Z. L. Xiao, J. Pearson, T. Xu, W.K. Kwok, Phase slippage driven dissipation and high-field Little-Parks effect in superconducting MoGe nanowire networks formed on nanoporous substrates, Phys. Rev. B 85 (2012).

DOI: 10.1103/physrevb.85.174513

Google Scholar

[41] A. D. Zaikin, D.S. Golubev, A. van Otterlo, G.T. Zimanyi, Quantum phase slips and transport in ultrathin superconducting wires, Phys. Rev. Lett. 78 (1997) 1552-1555.

DOI: 10.1103/physrevlett.78.1552

Google Scholar

[42] M. -H. Bae, R. C. Dinsmore III, T. Aref, M. Brenner, and A. Bezryadin, Current-Phase Relationship, Thermal and Quantum Phase Slips in Superconducting Nanowires Made on a Scaffold Created Using Adhesive Tape, Nano Lett. 9 (2009) 1889-1896.

DOI: 10.1021/nl803894m

Google Scholar

[43] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.

DOI: 10.1016/0009-2614(74)85388-1

Google Scholar

[44] D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode, J. Electroanal. Chem. 84 (1977) 1-20.

Google Scholar

[45] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman-spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215-5217.

DOI: 10.1021/ja00457a071

Google Scholar

[46] S.C. Pоnzaru, I. Pavel, N. Leopold, W. Kiefer, Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering, J. Raman Spectrosc. 35 (2004) 338-346.

DOI: 10.1002/jrs.1153

Google Scholar

[47] J.M. Reyes-Goddard, H. Barr, N. Stone, Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids, Photodiag. Photodyn. Ther. 2 (2005) 223-233.

DOI: 10.1016/s1572-1000(05)00066-9

Google Scholar

[48] J. Kneipp, H. Kneipp, K. Kneipp, SERS—a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37 (2008) 1052-1060.

DOI: 10.1039/b708459p

Google Scholar

[49] K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics, Anal. Bioanal. Chem. 390 (2008) 113-124.

DOI: 10.1007/s00216-007-1667-3

Google Scholar

[50] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering, Phys. Rev. Lett. 76 (1996) 2444-2447.

DOI: 10.1103/physrevlett.76.2444

Google Scholar

[51] S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surfaceenhanced raman scattering, Science 275 (1997) 1102-1106.

DOI: 10.1126/science.275.5303.1102

Google Scholar

[52] K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering, Appl. Spectrosc. 52 (1998) 175-178.

DOI: 10.1366/0003702981943275

Google Scholar

[53] C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105 (2001) 5599-5611.

DOI: 10.1021/jp010657m

Google Scholar

[54] N. Felidj, J. Aubard, G. Levi, J.R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, F.R. Aussenegg, Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering, Phys. Rev. B 65 (2002).

DOI: 10.1103/physrevb.65.075419

Google Scholar

[55] J.C. Hulteen, R.P. Van Duyne, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A 13 (1995) 1553-1558.

DOI: 10.1116/1.579726

Google Scholar

[56] L. Baia, M. Baia, J. Popp, S. Astilean, Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR, J. Phys. Chem. B 110 (2006) 23982-86.

DOI: 10.1021/jp064458k

Google Scholar

[57] S. Chan, S. Kwon, T. -W. Koo, P.L. Lee, A.A. Berlin, Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores, Adv. Mater. 15 (2003) 1595-1598.

DOI: 10.1002/adma.200305149

Google Scholar

[58] H. Lin, J. Mock, D. Smith, T. Gao, M.J. Sailor, Surface-enhanced Raman scattering from silver-plated porous silicon, J. Phys. Chem. B. 108 (2004) 11654-11659.

DOI: 10.1021/jp049008b

Google Scholar

[59] F. Giorgis, E. Descrovi, A. Chiodoni, E. Froner, M. Scarpa, A. Venturello, F. Geobaldo, Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate, Appl. Surf. Sci. 254 (2008) 7494-7497.

DOI: 10.1016/j.apsusc.2008.06.029

Google Scholar

[60] A. Yu. Panarin, V. S. Chirvony, K. I. Kholostov, P. -Y. Turpin, S. N. Terekhov, Formation of SERS-Active Silver Structures on the Surface of Mesoporous Silicon, J. Appl. Spectroscopy 76, 2 (2009) 281-287.

DOI: 10.1007/s10812-009-9175-1

Google Scholar

[61] S. N. Terekhov, P. Mojzes, S. M. Kachan, N. I. Mukhurov, S. P. Zhvavyi, A. Yu. Panarin, I. A. Khodasevich, V. A. Orlovich, A. Thorel, F. Grillond, P. -Y. Turpin, A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon, J. Raman Spectrosc. 42 (2011).

DOI: 10.1002/jrs.2661

Google Scholar

[62] T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, Localized and delocalized plasmons in metallic nanovoids, Phys. Rev. B. 74, (2006) 245415-12.

DOI: 10.1103/physrevb.74.245415

Google Scholar

[63] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8, (1992) 3183-3190.

DOI: 10.1021/la00048a054

Google Scholar

[64] A. S. Dimitrov, K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir 12 (1996) 1303-1311.

DOI: 10.1021/la9502251

Google Scholar

[65] P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Single-Crystal Colloidal Multilayers of Controlled Thickness, Chem. Mater. 11 (1999) 2132-2140.

DOI: 10.1021/cm990080+

Google Scholar

[66] R. M. Cole, S. Mahajan, P. N. Bartlett, J. J. Baumberg, Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids, Optic Express 17 (2009) 13298-13308.

DOI: 10.1364/oe.17.013298

Google Scholar

[67] H. Bandarenka, K. Girel, V. Lukashevich, V. Bondarenko, Determination of tear proteins by surface enhanced Raman scattering, Abstracts of Third International Conference on Advanced Complex Inorganic Nanomaterials, 13–17 July 2015, Namur, Belgium, 2015, P-180.

Google Scholar

[68] J. -M. Escoffre, T. Portet, L. Wasungu, J. Teissie, D. Dean, M. -P. Rols, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expressionin cells and tissues, Molecular Biotechnology 41 (2009) 286-295.

DOI: 10.1007/s12033-008-9121-0

Google Scholar

[69] M. Balucani, P. Nenzi, C. Crescenzi, P. Marracino, F. Apollonio, M. Liberti, A. Densi, C. Colizzi, Technology and Design of Innovative Flexible Electrode for Biomedical Applications, Electronic Components and Technology Conference, 2011, pp.1319-1324.

DOI: 10.1109/ectc.2011.5898682

Google Scholar