[1]
R. Herino, Nanocomposite materials from porous silicon, Materials Science and Engineering: B 69 (2000) 70-76.
Google Scholar
[2]
H. Bandarenka, M. Balucani, R. Crescenzi, A. Ferrari, Formation of composite nanostructures by corrosive deposition of copper into porous silicon, Superlattices and Microstructures 44 (2008) 583-587.
DOI: 10.1016/j.spmi.2007.11.004
Google Scholar
[3]
E.B. Chubenko, A.A. Klyshko, V.A. Petrovich, V.P. Bondarenko, Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions, Thin Solid Films 517 (2009) 5981-5987.
DOI: 10.1016/j.tsf.2009.03.134
Google Scholar
[4]
P. Granitzer, K. Rumpf, Porous Silicon - A Versatile Host Material, Materials 3 (2010) 943-998.
DOI: 10.3390/ma3020943
Google Scholar
[5]
A. Dolgiy, S.V. Redko, H. Bandarenka, S.L. Prischepa, K. Yanushkevich, P. Nenzi, M. Balucani, V. Bondarenko, Electrochemical Deposition and Characterization of Ni in Mesoporous Silicon, J. Electrochem. Soc. 159 (2012) D623-D627.
DOI: 10.1149/2.050210jes
Google Scholar
[6]
S.L. Prischepa, A.L. Dolgiy, H.V. Bandarenka, V.P. Bondarenko, K.I. Yanushkevich, V.G. Bayev, A.A. Maximenko, Yu. A. Fedotova, A. Zarzycki, Y. Zabila, Synthesis and Properties of Ni Nanowires in Porous Silicon Templates, in Nanowires: Synthesis, Electrical Properties and Uses in Biological Systems (ed. Luke J. Wilson), Nova Science Publ. Inc., 2014, pp.89-128.
DOI: 10.1016/j.tsf.2013.01.049
Google Scholar
[7]
L. Canham, Handbook of Porous Silicon, Springer International Publishing Switzerland, (2014).
Google Scholar
[8]
Yu. Panarin, S. Terekhov, K. Kholostov, V. Bondarenko, SERS-active substrates based on n-type porous silicon, Appl. Surf. Sci. 256 (2010) 6969-6976.
DOI: 10.1016/j.apsusc.2010.05.008
Google Scholar
[9]
H. Bandarenka, S. Redko, A. Smirnov, A. Panarin, S. Terekhov, P. Nenzi, M. Balucani, V. Bondarenko, Nanostructures formed by displacement of porous silicon with copper: from nanoparticles to porous membranes, Nanoscale Res. Lett. 7 (2012) 477-486.
DOI: 10.1186/1556-276x-7-477
Google Scholar
[10]
C. Cirillo, M. Trezza, F. Chiarella, A. Vecchione, V. P. Bondarenko, S.L. Prischepa, C. Attanasio, Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates, Appl. Phys. Lett. 101 (2012) 172601-5.
DOI: 10.1063/1.4764066
Google Scholar
[11]
A. Dolgyi, S. Redko, H. Bandarenka, A. Shapel, V. Bondarenko, Beta-battery based on 63Ni/macroporous silicon, ECS Meeting Abstracts, Honolulu PRiME 2012, 7-12 October 2012 Honolulu, Hawaii, 359.
DOI: 10.1149/ma2012-02/5/359
Google Scholar
[12]
H. Bandarenka, K. Artsemyeva, S. Redko, A. Panarin, S. Terekhov, V. Bondarenko, Effect of swirl-like resistivity striations in n+-type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates, Phys. Status Solidi C 10 (2013).
DOI: 10.1002/pssc.201200731
Google Scholar
[13]
H. Bandarenka, S.L. Prischepa, R. Fittipaldi, A. Vecchione, P. Nenzi, M. Balucani, V. Bondarenko, Comparative study of initial stages of copper immersion deposition on bulk and porous silicon, Nanoscale Res. Lett. 8 (2013) 85-92.
DOI: 10.1186/1556-276x-8-85
Google Scholar
[14]
C. Cirillo, S. Prischepa, M. Trezza, V. Bondarenko, C. Attanasio, Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates, Nanotechnology 25 (2014) 425205-14.
DOI: 10.1088/0957-4484/25/42/425205
Google Scholar
[15]
K. Artsemyeva, A. Dolgiy, H. Bandarenka, A. Panarin, I. Khodasevich, S. Terekhov, V. Bondarenko, Fabrication of SERS-active Substrates by Electrochemical and Electroless Deposition of Metals in Macroporous Silicon, ECS Transactions 53 (2013).
DOI: 10.1149/05311.0085ecst
Google Scholar
[16]
K. Girel, H. Bandarenka, L. Dolgyi, Deposition of Silver Dendrites on Porous Silicon for Fabrication of SERS-active Substrates, in Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2015, pp.600-603.
DOI: 10.1142/9789814696524_0146
Google Scholar
[17]
P. Allongue, Porous Silicon Formation Mechanisms, in Properties of Porous Silicon, INSPEC, London, 1997, pp.3-11.
Google Scholar
[18]
R. Herino, Pore Size Distribution in Porous Silicon, in Properties of Porous Silicon, INSPEC, London, 1997, pp.89-96.
Google Scholar
[19]
N.I. Kargin, A.O. Sultanov, A.V. Bondarenko, V.P. Bondarenko, S.V. Red'ko, A.S. Ionov, Formation and Structure of Mesoporous Silicon, Russian Microelectronics, 43, 8 (2014) 531-535.
DOI: 10.1134/s106373971408006x
Google Scholar
[20]
A. Loni, Porous Silicon Formation by Anodization, in Handbook of Porous Silicon, Springer International Publishing Switzerland, 2014, pp.11-22.
DOI: 10.1007/978-3-319-05744-6_2
Google Scholar
[21]
A. Yu. Panarin, K.V. Girel, H.V. Bandarenka, I.A. Khodasevich, V.P. Bondarenko, S.N. Terekhov, Formation of Silver Nanostructures on Porous Silicon and Review of their Application, Proceedings of the 2nd International Conference on Modern Applications of Nanotechnology, Minsk, Belarus, 6-8 May 2015, S306.
DOI: 10.1186/s11671-016-1473-y
Google Scholar
[22]
A.V. Bondarenko, Chemical corrosive deposition of copper on porous silicon, in Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2005, pp.435-438.
DOI: 10.1142/9789812701947_0099
Google Scholar
[23]
H. Bandarenka, A. Shapel, M. Balucani, Cu-Si nanocomposites based on porous silicon matrix, Solid State Phenomena 151 (2009) 222–226.
DOI: 10.4028/www.scientific.net/ssp.151.222
Google Scholar
[24]
H. Bandarenka, S. Redko, P. Nenzi, M. Balucani, V. Bondarenko, Optimization of chemical displacement deposition of copper on porous silicon, J. Nanosci. Nanotechnol. 12 (2012) 8725-8731.
DOI: 10.1166/jnn.2012.6470
Google Scholar
[25]
H. Bandarenka, V. Tsubulskii, M. Balucani, V.P. Bondarenko, Chemical resistance of mesoporous silicon under immersion deposition of copper, in Materials of the 9th International Conference on Porous Semiconductors – Science and Technology, 9-14 March, 2014, Alicante, Spain, Craficas Cervantes, C.B., 2014, pp.400-401.
Google Scholar
[26]
A. Dolgiy, H. Bandarenka, V. Petrovich. Influence of Si conductivity type on immersion deposition of Cu films on porous Si, in Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte. Ltd, Singapore, 2015, pp.280-283.
DOI: 10.1142/9789814696524_0069
Google Scholar
[27]
K.Y. Arutyunov, D.S. Golubev, A. D. Zaikin, Superconductivity in one dimension, Phys. Rep. 464 (2008) 1-70.
DOI: 10.1016/j.physrep.2008.04.009
Google Scholar
[28]
A. Bezryadin, Quantum suppression of superconductivity in nanowires, J. Phys.: Condens. Matter 20 (2008) 043202-18.
DOI: 10.1088/0953-8984/20/04/043202
Google Scholar
[29]
O.V. Astafiev, L.B. Ioffe, S. Kafanov, Yu.A. Pashkin, K. Yu. Arutyunov, D. Shahar, O. Cohen, J.S. Tsai, Coherent quantum phase slip, Nature, 484 (2012) 355-358.
DOI: 10.1038/nature10930
Google Scholar
[30]
J. Ku, V. Manucharyan, A. Bezryadin, Superconducting nanowires as nonlinear inductive elements for qubits, Phys. Rev. B 82 (2010) 134518-134528.
DOI: 10.1103/physrevb.82.134518
Google Scholar
[31]
J. E. Mooij, Yu. V. Nazarov, Superconducting nanowires as quantum phase-slip junctions, Nat. Phys. 2 (2006) 169-172.
DOI: 10.1038/nphys234
Google Scholar
[32]
N. Giordano, Dissipation in a one-dimensional superconductor: Evidence for macroscopic quantum tunneling, Phys. Rev. B 41, 10 (1990) 6350-6365.
DOI: 10.1103/physrevb.41.6350
Google Scholar
[33]
A. T. Bollinger, A. Rogachev, M. Remeika, A. Bezryadin, Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires, Phys. Rev. B 69 (2004) 180503-06.
DOI: 10.1103/physrevb.69.180503
Google Scholar
[34]
R.S. Newbower, M.R. Beasley, M. Tinkham, Fluctuation Effects on the Superconducting Transition of Tin Whisker Crystals, Phys. Rev. B 5 (1972) 864-868.
DOI: 10.1103/physrevb.5.864
Google Scholar
[35]
J. Wang, X. -C. Ma, L. Lu, A. -Z. Jin, C. -Z. Gu, X. C. Xie, J. -F. Jia, X. Chen, Q. -K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett. 92, 233119-21 (2008).
DOI: 10.1063/1.2945280
Google Scholar
[36]
A. Bezryadin, C. N. Lau, and M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires, Nature 404 (2000) 971-974.
DOI: 10.1038/35010060
Google Scholar
[37]
D.S. Hopkins, D. Pekker, P.M. Goldbart, A. Bezryadin, Quantum interference device made by DNA templating of superconducting nanowires, Science 308 (2005) 1762-1765.
DOI: 10.1126/science.1111307
Google Scholar
[38]
A. Bezryadin, P.M. Goldbart, Superconducting Nanowires Fabricated Using Molecular Templates, Adv. Mater. 22 (2010) 1111-1121.
DOI: 10.1002/adma.200904353
Google Scholar
[39]
S. Michotte, L. Piraux, S. Dubois, F. Pailloux, G. Stenuit, J. Govaerts, Superconducting properties of lead nanowires arrays, Physica C 377 (2002) 267-276.
DOI: 10.1016/s0921-4534(01)01306-5
Google Scholar
[40]
Q. Luo, X. Q. Zeng, M. E. Miszczak, Z. L. Xiao, J. Pearson, T. Xu, W.K. Kwok, Phase slippage driven dissipation and high-field Little-Parks effect in superconducting MoGe nanowire networks formed on nanoporous substrates, Phys. Rev. B 85 (2012).
DOI: 10.1103/physrevb.85.174513
Google Scholar
[41]
A. D. Zaikin, D.S. Golubev, A. van Otterlo, G.T. Zimanyi, Quantum phase slips and transport in ultrathin superconducting wires, Phys. Rev. Lett. 78 (1997) 1552-1555.
DOI: 10.1103/physrevlett.78.1552
Google Scholar
[42]
M. -H. Bae, R. C. Dinsmore III, T. Aref, M. Brenner, and A. Bezryadin, Current-Phase Relationship, Thermal and Quantum Phase Slips in Superconducting Nanowires Made on a Scaffold Created Using Adhesive Tape, Nano Lett. 9 (2009) 1889-1896.
DOI: 10.1021/nl803894m
Google Scholar
[43]
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
DOI: 10.1016/0009-2614(74)85388-1
Google Scholar
[44]
D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode, J. Electroanal. Chem. 84 (1977) 1-20.
Google Scholar
[45]
M.G. Albrecht, J.A. Creighton, Anomalously intense Raman-spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215-5217.
DOI: 10.1021/ja00457a071
Google Scholar
[46]
S.C. Pоnzaru, I. Pavel, N. Leopold, W. Kiefer, Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering, J. Raman Spectrosc. 35 (2004) 338-346.
DOI: 10.1002/jrs.1153
Google Scholar
[47]
J.M. Reyes-Goddard, H. Barr, N. Stone, Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids, Photodiag. Photodyn. Ther. 2 (2005) 223-233.
DOI: 10.1016/s1572-1000(05)00066-9
Google Scholar
[48]
J. Kneipp, H. Kneipp, K. Kneipp, SERS—a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37 (2008) 1052-1060.
DOI: 10.1039/b708459p
Google Scholar
[49]
K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics, Anal. Bioanal. Chem. 390 (2008) 113-124.
DOI: 10.1007/s00216-007-1667-3
Google Scholar
[50]
K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering, Phys. Rev. Lett. 76 (1996) 2444-2447.
DOI: 10.1103/physrevlett.76.2444
Google Scholar
[51]
S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surfaceenhanced raman scattering, Science 275 (1997) 1102-1106.
DOI: 10.1126/science.275.5303.1102
Google Scholar
[52]
K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering, Appl. Spectrosc. 52 (1998) 175-178.
DOI: 10.1366/0003702981943275
Google Scholar
[53]
C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105 (2001) 5599-5611.
DOI: 10.1021/jp010657m
Google Scholar
[54]
N. Felidj, J. Aubard, G. Levi, J.R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, F.R. Aussenegg, Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering, Phys. Rev. B 65 (2002).
DOI: 10.1103/physrevb.65.075419
Google Scholar
[55]
J.C. Hulteen, R.P. Van Duyne, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
DOI: 10.1116/1.579726
Google Scholar
[56]
L. Baia, M. Baia, J. Popp, S. Astilean, Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR, J. Phys. Chem. B 110 (2006) 23982-86.
DOI: 10.1021/jp064458k
Google Scholar
[57]
S. Chan, S. Kwon, T. -W. Koo, P.L. Lee, A.A. Berlin, Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores, Adv. Mater. 15 (2003) 1595-1598.
DOI: 10.1002/adma.200305149
Google Scholar
[58]
H. Lin, J. Mock, D. Smith, T. Gao, M.J. Sailor, Surface-enhanced Raman scattering from silver-plated porous silicon, J. Phys. Chem. B. 108 (2004) 11654-11659.
DOI: 10.1021/jp049008b
Google Scholar
[59]
F. Giorgis, E. Descrovi, A. Chiodoni, E. Froner, M. Scarpa, A. Venturello, F. Geobaldo, Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate, Appl. Surf. Sci. 254 (2008) 7494-7497.
DOI: 10.1016/j.apsusc.2008.06.029
Google Scholar
[60]
A. Yu. Panarin, V. S. Chirvony, K. I. Kholostov, P. -Y. Turpin, S. N. Terekhov, Formation of SERS-Active Silver Structures on the Surface of Mesoporous Silicon, J. Appl. Spectroscopy 76, 2 (2009) 281-287.
DOI: 10.1007/s10812-009-9175-1
Google Scholar
[61]
S. N. Terekhov, P. Mojzes, S. M. Kachan, N. I. Mukhurov, S. P. Zhvavyi, A. Yu. Panarin, I. A. Khodasevich, V. A. Orlovich, A. Thorel, F. Grillond, P. -Y. Turpin, A comparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon, J. Raman Spectrosc. 42 (2011).
DOI: 10.1002/jrs.2661
Google Scholar
[62]
T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, Localized and delocalized plasmons in metallic nanovoids, Phys. Rev. B. 74, (2006) 245415-12.
DOI: 10.1103/physrevb.74.245415
Google Scholar
[63]
N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8, (1992) 3183-3190.
DOI: 10.1021/la00048a054
Google Scholar
[64]
A. S. Dimitrov, K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir 12 (1996) 1303-1311.
DOI: 10.1021/la9502251
Google Scholar
[65]
P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Single-Crystal Colloidal Multilayers of Controlled Thickness, Chem. Mater. 11 (1999) 2132-2140.
DOI: 10.1021/cm990080+
Google Scholar
[66]
R. M. Cole, S. Mahajan, P. N. Bartlett, J. J. Baumberg, Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids, Optic Express 17 (2009) 13298-13308.
DOI: 10.1364/oe.17.013298
Google Scholar
[67]
H. Bandarenka, K. Girel, V. Lukashevich, V. Bondarenko, Determination of tear proteins by surface enhanced Raman scattering, Abstracts of Third International Conference on Advanced Complex Inorganic Nanomaterials, 13–17 July 2015, Namur, Belgium, 2015, P-180.
Google Scholar
[68]
J. -M. Escoffre, T. Portet, L. Wasungu, J. Teissie, D. Dean, M. -P. Rols, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expressionin cells and tissues, Molecular Biotechnology 41 (2009) 286-295.
DOI: 10.1007/s12033-008-9121-0
Google Scholar
[69]
M. Balucani, P. Nenzi, C. Crescenzi, P. Marracino, F. Apollonio, M. Liberti, A. Densi, C. Colizzi, Technology and Design of Innovative Flexible Electrode for Biomedical Applications, Electronic Components and Technology Conference, 2011, pp.1319-1324.
DOI: 10.1109/ectc.2011.5898682
Google Scholar