Precise Manipulations with Asymmetric Nano-Objects Viscoelastically Bound to a Surface

Article Preview

Abstract:

This work provides a review of commonly used approaches for fine manipulations with nanoobjects by means of scanning probe microscopes and describes an original alternative cost-effective nanomanipulation method. High precision manipulations are important for up-to-date technologies of nanoelectronic, molecular, hybrid and nanomechanical devices and sensor systems especially for the state of the art fundamental and applied researches. A new method to form nanoassemblies by using asymmetric nanoparticles fixed on the surface with the viscoelastic linker has been proposed, theoretically substantiated and experimentally realized. An original theoretical model has been proposed to describe the ordering process of the linked nanorods by means of the multipass interaction with an atomic force microscope (AFM) tip.In addition, an adjustment of the tip-surface interaction has been proposed and implemented which is independent of the AFM. This original approach is based on additional ultrasonic excitation of the surface. This also enabled us to control the degree binding of the nanoparticles with the substrate.With these techniques we were able to form sets of chains (more than 5-μm length) consisting of nanometer-sized (10x50 nm) gold nanorods (NRs) linked to the surface of gallium arsenide by an organic linker. It has been shown that the viscoelastic binding of asymmetric nanoparticles to the surface allows us to create linear assemblies of nanoobjects in just a few passes of the AFM probe.The proposed technique significantly increases manufacturability of nanomanipulations. Direct formation of nanostructures can significantly reduce the cost of their formation in comparison with modern conventional technological approaches, which in many cases may even have some fundamental limitations (in resolution, in materials used, etc.).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-276

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. T. Salling, M.G. Lagally. Fabrication of atomic-scale structures on Si (001) surfaces. Science, 265. 5171, (1994) 502-506.

DOI: 10.1126/science.265.5171.502

Google Scholar

[2] T. Junno, S. -B. Carlsson, H. Xu, L. Montelius, L. Samuelson, Fabrication of quantum devices by Angstrom-level manipulation of nanoparticles with an atomic force microscope, Applied Physics Letters 72 (1998) 548-550.

DOI: 10.1063/1.120754

Google Scholar

[3] A.A.G. Requicha, Nanorobots, NEMS and nanoassembly, Proc. IEEE, special issue on nanoelectronics and nanoscale processing 91 (2003) 1922-(1933).

DOI: 10.1109/jproc.2003.818333

Google Scholar

[4] S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, B.E. Koel, H.A. Atwater, Plasmonics – a route to nanoscale optical devices, Advanced Materials 13 (2001) 1501-1505.

DOI: 10.1002/adma.200390134

Google Scholar

[5] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Materials 2 (2003) 229-232.

DOI: 10.1038/nmat852

Google Scholar

[6] Lianming Tong, Tao Zhu, Zhongfan Liu, Tong Lianming Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement, Applied Physics Letters 92 (2008) 023109-1 - 023109-3.

DOI: 10.1063/1.2822418

Google Scholar

[7] S. Decossas, F. Mazen, Th. Baron, G. Bremond, A. Souifi, Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication, Nanotechnology 14 (2003) 1272-1278.

DOI: 10.1088/0957-4484/14/12/008

Google Scholar

[8] Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Applied Surface Science 141 (1999) 201-209.

DOI: 10.1016/s0169-4332(98)00506-6

Google Scholar

[9] L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, P. Hakonen, Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes, Microelectronic Engineering 61-62 (2002) 687-691.

DOI: 10.1016/s0167-9317(02)00445-8

Google Scholar

[10] A.J.M. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K.S. Novoselov, J.C. Maan, Nanolithography and manipulation of graphene using an atomic force microscope, Solid State Communications 147 (2008) 366-369.

DOI: 10.1016/j.ssc.2008.06.027

Google Scholar

[11] T. Junno, S. -B. Carlsson, H. Q. Xu, L. Samuelson, Single-electron tunneling effects in a metallic double dot device, Applied Physics Letters 80 (2002) 667-669.

DOI: 10.1063/1.1436532

Google Scholar

[12] R.S. Liu, D. Suyatin, H. Pettersson, L. Samuelson, Assembling ferromagnetic single-electron transistors by atomic force microscopy, Nanotechnology 18 (2007) 055302-055306.

DOI: 10.1088/0957-4484/18/5/055302

Google Scholar

[13] S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics – A Route to Nanoscale Optical Devices, Adv. Mater. 13 (2001) 1501-1505.

DOI: 10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z

Google Scholar

[14] L. Dong, F. Arai, M. Nakajima, P. Liu and T. Fukuda, Nanotube devices fabricated in a nano laboratory, Proc. IEEE Int'l Conf. on Robotics & Automation (Taipei, Taiwan, 2003) 3624-3629.

DOI: 10.1109/robot.2003.1242152

Google Scholar

[15] M. -F. Yu, M. J. Dyer, G. D. Skidmore, H. W. Rohrs, X. -K. Lu, K. D. Hausman, J. R. von Her, R. S. Ruoff, Three dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10 (1999) 244-252.

DOI: 10.1088/0957-4484/10/3/304

Google Scholar

[16] L. Roschier, J. Penttilӓ, M. Martin, P. Hakonen, M. Paalanen, U. Tapper, E. Kauppinen, C. Journet, P. Bernier, Single-electron transistor made of multi-walled carbon nanotube using scanning probe manipulation, Applied Physics Letters 75 (1999).

DOI: 10.1063/1.124495

Google Scholar

[17] G. Li, N. Xi, H. Chen, W.J. Li, C.K.M. Fung, R.H.M. Chan, M. Zhang, T. -J. Tam, Nano-assembly of DNA Based Electronic Devices Using Atomic Force Microscopy, Proceedings of 2004 IEEElRSJ International Conference on Intelligent Robots and Systems (Sendai, Japan, 2004) 583-588.

DOI: 10.1109/iros.2004.1389415

Google Scholar

[18] Y. Zhang, X. Hu, J. Sun, Y. Shen, J. Hu, X. Xu, Z. Shao, High-Resolution Imaging and Nano-Manipulation of Biological Structures on Surface, Microscopy Research And Technique 74 (2011) 614-626.

DOI: 10.1002/jemt.20925

Google Scholar

[19] R. Resch, D. Lewis, S. Meltzer, N. Montoya, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Manipulation of gold nanoparticles in liquid environments using scanning force microscopy, Ultramicroscopy 82 (2000) 135-139.

DOI: 10.1016/s0304-3991(99)00152-7

Google Scholar

[20] S. C. Minne, S. R. Manalis, A. Atalar, C. F. Quate. Independent parallel lithography using the atomic force microscope. Journal of Vacuum Science & Technology B, 14(4), (1996) 2456-2461.

DOI: 10.1116/1.588753

Google Scholar

[21] M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate. 5× 5 2D AFM cantilever arrays a first step towards a Terabit storage device. Sensors and Actuators A: Physical, 73(1), (1999).

DOI: 10.1016/s0924-4247(98)00259-3

Google Scholar

[22] H. Koyama, F. Oohira, M. Hosogi, G. Hashiguchi, T. Hamada. Multiprobe SPM system using optical interference patterns. IEEE Journal of Selected Topics in Quantum Electronics, 12(2), (2007) 415-422.

DOI: 10.1109/jstqe.2007.892067

Google Scholar

[23] D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres, Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Applied Physics Letters 66 (1995) 1012-1014.

DOI: 10.1063/1.113589

Google Scholar

[24] T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Applied Physics Letters 66 (1995) 3627-3629.

DOI: 10.1063/1.113809

Google Scholar

[25] M. Martin, L. Roschier, P. Hakonen, U. Parts, M. Paalanen, B. Schleicher, E.I. Kauppinen, Manipulation of Ag nanoparticles utilizing noncontact Requicha Nanomanipulation with the AFM 35 atomic force microscopy, Applied Physics Letters 73 (1998).

DOI: 10.1063/1.122187

Google Scholar

[26] T.R. Ramachandran, A. Madhukar, P. Chen, B.E. Koelc, Imaging and direct manipulation of nanoscale three-dimensional features using the noncontact atomic force microscope, J. Vac. Sci. Technol. 16 (1998) 1425-1429.

DOI: 10.1116/1.581162

Google Scholar

[27] Z. Liu, Y. Yang, Y. Qu, Z. Dong, W.J. Li, Y. Wang, Vibration-Mode Based Real-Time Nanoimaging and Nanomanipulation, Proceedings of the 7th IEEE International Conference on Nanotechnology (Hong Kong, 2007) 515-519.

DOI: 10.1109/nano.2007.4601244

Google Scholar

[28] C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P. Will, Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring, Nanotechnology 9 (1998) 360-364.

DOI: 10.1088/0957-4484/9/4/011

Google Scholar

[29] A.A.G. Requicha, Nanomanipulalion with the Atomic Force Microscope, in: R. Waser (Ed. ), Nanotechnology. Volume 3: Information Technology, Wiley-VCH, Weinheim, 2008, pp.239-273.

Google Scholar

[30] T. Hansen, A. Kuhle, A.H. Sorensen, J. Bohr, P. E. Lindelof, A technique for positioning nanoparticles using an atomic force microscope, Nanotechnology 9 (1998) 337-342.

DOI: 10.1088/0957-4484/9/4/006

Google Scholar

[31] S. Decossas, F. Mazen, T. Baron, G. Brémond, A. Souifi, Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication, Nanotechnology 14 (2003) 1272-1278.

DOI: 10.1088/0957-4484/14/12/008

Google Scholar

[32] R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14 (1998) 6613-6616.

DOI: 10.1021/la980386f

Google Scholar

[33] J.P. Xu, K.J. Kwak, J.L. Lee, G. Agarwa, Lifting and Sorting of Charged Au Nanoparticles by Electrostatic Forces in Atomic Force Microscopy, Small. 6 (2010) 2105-2108.

DOI: 10.1002/smll.201000924

Google Scholar

[34] Y. Wang, Y. Zhang, B. Li, J. Lu, J. Hu, Capturing and depositing one nanoobject at a time: Single particle dip-pen nanolithography, Applied Physics Letters 90 (2007) 133102-1 - 133102-2.

DOI: 10.1063/1.2714287

Google Scholar

[35] A.A. Efremov, P.M. Lytvyn, A.G. Gontar, S.P. Starik, V.M. Perevertailo, I.V. Prokopenko, O.M. Kutsay, O.B. Loginova, Macro- and Nanoscopic Capillary Effect on Nanosructured Real Surface, Journal of Superhard Materials 34 (2012) P. 81-94.

DOI: 10.3103/s1063457612020025

Google Scholar

[36] J. Toset, G. Gomila, Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces, Applied Physics Letters 96 (2010) 043117-1 - 043117-3.

DOI: 10.1063/1.3297903

Google Scholar

[37] P.C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Optical Trapping and Manipulation of Nano-objects with an Apertureless Probe, Physical Riview Letters 88 (2002) 123601-1 - 123601-4.

DOI: 10.1103/physrevlett.88.123601

Google Scholar

[38] P.C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Selective nanomanipulation using optical forces, Physical Riview B 66 (2002) 95405-1 - 195405-11.

DOI: 10.1103/physrevb.66.195405

Google Scholar

[39] B. Vikramaditya, J. Nelson, Visually guided microassembly using optical microscopes and active vision, Proc. IEEE Int'l Conf. on Robotics & Automation (Albuquerque, NM, 1997) 3172-3177.

DOI: 10.1109/robot.1997.606771

Google Scholar

[40] T. Sato, T. Kameya, H. Miyazaki and Y. Hatamura, Hand-eye system in the nano manipulation world, Proc. IEEE Int. Conf. on Robotics & Automation (Nagoya, Japan, 1995) 59-66.

DOI: 10.1109/robot.1995.525264

Google Scholar

[41] S. Fatikow, T. Wich, H. Hulsen, T. Sievers, M. Jahnisch, Microrobot system for automatic nanohandling inside a scanning electron microscope, Proc. IEEE Int'l Conf. on Robotics & Automation (ICRA '06) (Orlando, FL, 2006) 1401-1407.

DOI: 10.1109/robot.2006.1641905

Google Scholar

[42] R. Saeidpourazar, N. Jalili, Nano-robotic manipulation using a RRP nanomanipulator: Part A – Mathematical modeling and development of a robust adaptive driving mechanism, Applied Mathematics and Computation. 206 (2008) 618-627.

DOI: 10.1016/j.amc.2008.05.079

Google Scholar

[43] R. Saeidpourazar, N. Jalili, Nano-robotic manipulation using a RRP nanomanipulator: Part B – Robust control of manipulator's tip using fused visual servoing and force sensor feedbacks Applied Mathematics and Computation. 206 (2008) 628-642.

DOI: 10.1016/j.amc.2008.05.078

Google Scholar

[44] G. Li, N. Xi, M. Yu, W. -K. Fung, Development of Augmented Reality System for AFM-Based Nanomanipulation, IEEE/ASME Transactions on Mechatronics 9 (2004) 358-365.

DOI: 10.1109/tmech.2004.828651

Google Scholar

[45] G. Li, N. Xi, T. Donna, H. Wang, In situ sensing and manipulation of molecules in biological samples using a nanorobotic system, Nanomedicine: Nanotechnology, Biology, and Medicine 1 (2005) 31-40.

DOI: 10.1016/j.nano.2004.11.005

Google Scholar

[46] H. Xie, D.S. Haliyo, S. Regnier, Parallel imaging/manipulation force microscopy, Applied Physics Letters 94 (2009) 153106-1 - 153106-3.

DOI: 10.1063/1.3119686

Google Scholar

[47] R. Resch, C. Baur, A. Bugacov, B.E. Koel, P.M. Echternach, A. Madhukar, N. Montoya, A.A.G. Requicha, P. Will, Linking and manipulation of gold multi-nanoparticle structures using dithiols and scanning force microscopy, J. Physical Chemistry B 103 (1999).

DOI: 10.1021/jp984508o

Google Scholar

[48] S. Meltzer, R. Resch, B.E. Koel, M.E. Thompson, A. Madhukar, A.A.G. Requicha, P. Will, Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticles, Langmuir. 17 (2001) 1713-1718.

DOI: 10.1021/la001170s

Google Scholar

[49] R. Resch, S. Meltzer, T. Vallant, H. Hoffmann, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Immobilizing Au nanoparticles on SiO2 surfaces using octadecylsiloxane mono-layers, Langmuir. 17 (2001) 5666-5670.

DOI: 10.1021/la001296p

Google Scholar

[50] O. Vidoni, S. Neumeier, N. Bardou, J. -L. Pelouard, Self-Assembly of Gold Nanoclusters on Molecularly Modified GaAs, Journal of Cluster Science 14 (2003) P. 325-336.

DOI: 10.1023/b:jocl.0000005067.63818.39

Google Scholar

[51] E. Harel, S.E. Meltzer, A.A. G. Requicha, M.E. Thompson, B.E. Koel, Fabrication of Polystyrene Latex Nanostructures by Nanomanipulation and Thermal Processing, Nano Lett. 5 (2005) 2624-2629.

DOI: 10.1021/nl0342592

Google Scholar

[52] R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, Jie Han, Improved fabrication approach for carbon nanotube probe devices, Applied Physics Letters 77 (2005) 3453-3455.

DOI: 10.1063/1.1328046

Google Scholar

[53] Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires, Nature Nanotechnology 5 (2010) 218-224.

DOI: 10.1038/nnano.2010.4

Google Scholar

[54] N.D. Jiao, Y.C. Wang, N. Xi, Z. Dong, AFM based anodic oxidation and its application to oxidative cutting and welding of CNT, Sci China Ser E-Tech Sci 52 (2009) 3149-3157.

DOI: 10.1007/s11431-009-0154-9

Google Scholar

[55] A. Tafazzoli, M. Sitti, Dynamic Behavior and Simulation of Nanoparticle Sliding during Nanoprobe-based Positioning, Proceedings of IMECE'04 ASME International Mechanical Engineering Congress (Anaheim, CA, 2004) 1-8.

DOI: 10.1115/imece2004-62470

Google Scholar

[56] Q. Zhou, P. Kallio, F. Arai, T. Fukuda, K. N. Koivo, Model for Operating Spherical Micro Objects, Proceedings of the 1999 International Symposium on Micromechatronics and Human Science (Nagoya, 1999) 79-85.

DOI: 10.1109/mhs.1999.819986

Google Scholar

[57] E.M.A. Abdel-Rahman, A.H. Nayfeh, Parametric Identification of Contact Forces Using AFM, Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (Taipei, Taiwan, 2004) 541-547.

DOI: 10.1109/icmens.2004.1509008

Google Scholar

[58] J.E. Sader, Frequency Response of Cantilever Beams Immersed in Viscous Fluids with Applications to the Atomic Force Microscope, Journal of Applied Physics 84 (1998) 64-76.

DOI: 10.1063/1.368002

Google Scholar

[59] M. Ashhab, M.V. Salapaka, M. Dahleh, I. Mezic, Dynamical Analysis and Control of Microcantilevers, Automatica 35 (1999) 1663-1670.

DOI: 10.1016/s0005-1098(99)00077-1

Google Scholar

[60] N.A. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, Scanning Local-acceleration Microscopy, Journal Vacuum Science and Technology B 14 (1996) 794-799.

Google Scholar

[61] A. Sebastian, M.V. Salapaka, D.J. Chen, Harmonic and Power Balance Tools for Tapping Mode Atomic Force Microscope, Journal of Applied Physics 89 (2001) 6473-6480.

DOI: 10.1063/1.1365440

Google Scholar

[62] A. Tafazzoli, C. Pawashe, M. Sitti, Atomic Force Microscope based Two- dimensional Assembly of Micro/Nanoparticles, The sixth IEEE International Symposium on Assembly and Task Planning (Montreal, Que, 2005) 230-235.

DOI: 10.1109/isatp.2005.1511478

Google Scholar

[63] A. Menciassi, A. Eisinberg, I. Izzo, P. Dario, From Macro" to "Micro, Manipulation: Models and Experiments, IEEE/ASME Transactions on Mechatronics 9 (2004) 311-320.

DOI: 10.1109/tmech.2004.828657

Google Scholar

[64] E. Fischbach, D.E. Krause, V.M. Mostepanenko, M. Novello, New Constraints on Ultrashort-ranged Yukawa Interactions from Atomic Force Microscopy, Physical Review D. 64 (2001) 64-76.

DOI: 10.1103/physrevd.64.075010

Google Scholar

[65] A. Meurk, Microscopic Stick-slip in Friction Force Microscopy, Tribology Letters 8 (2000) 161-169.

Google Scholar

[66] S. Saito, H. T. Miyazaki, T. Sato, K. Takahashi, Kinematics of Mechanical and Adhesional Micromanipulation under a Scanning Electron Microscope, Journal of Applied Physics 92 (2002) 5140-5149.

DOI: 10.1063/1.1512313

Google Scholar

[67] R.W. Stark, G. Schitter, A. Stemmer, Velocity Dependent Friction Laws in Contact mode Atomic Force Microscopy, Ultramicroscopy 100 (2004) 309-317.

DOI: 10.1016/j.ultramic.2003.11.011

Google Scholar

[68] S. Salapaka, M. Dahleh, A Model for Friction in Atomic Force Microscopy, Proceedings of the American Control Conference (Chicago, IL, 2000) 2102-2107 vol. 3.

DOI: 10.1109/acc.2000.879572

Google Scholar

[69] S.M. Dutta. Dynamics Hysteresis Modeling and Applications. Master's thesis, Rice University, (2004).

Google Scholar

[70] J.M. Carlson, A.A. Batista, Constitutive Relation for the Friction between Lubricated Surfaces, Physical Review E. 53 (1996) 4153-4165.

DOI: 10.1103/physreve.53.4153

Google Scholar

[71] B.N.J. Persson, Sliding Friction: Physical Principles and Applications. Nano Science and Technology, Germany, Springer, (2000).

Google Scholar

[72] A. Lemaitre, Rearangements and Dilatancy for Sheared Dense Materials, Physical Review Letters 89 (2002) 4153-4165.

Google Scholar

[73] A. Lemaitre, J. Carlson, Boundary Lubrication with a Glassy Interface, Physical Review E. 69 (2004) 061611.

Google Scholar

[74] B.V. Derjaguin, V.M. Muller, Yu.P. Toropov, Effect of contact deformations on the adhesion of particles, J. Colloid. Interface Sci. 53 (1975) 314-326.

DOI: 10.1016/0021-9797(75)90018-1

Google Scholar

[75] B.V. Derjaguin, Y.I. Rabinovich, N.V. Churaev, Direct measurement of molecular forces Nature 272 (1978) 313-318.

DOI: 10.1038/272313a0

Google Scholar

[76] E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Guntherodt, Velocity Dependence of Atomic Friction, Physical Review Letters 84 (2000) 1172-1175.

DOI: 10.1103/physrevlett.84.1172

Google Scholar

[77] S. Fujisawa, Y. Sugawara, S. Ito, S. Mishima, T. Okada, S. Morita, The Two- dimensional Stick-slip Phenomenon with Atomic Resolution, Nanotechnology 4 (1993) 138-142.

DOI: 10.1088/0957-4484/4/3/002

Google Scholar

[78] R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.J. Guntherodt, Atomic Scale Stick slip Processes on Cu(111), Physical Review B. 60 (1999) 301-304.

DOI: 10.1103/physrevb.60.r11301

Google Scholar

[79] A. Schirmeisen, L. Jansen, H. Fuchs, Tip-jump Statistics of Stick-slip Friction, Physical Review B. 71 (2005) 301-304.

DOI: 10.1103/physrevb.71.245403

Google Scholar

[80] J. Hu, S.D. Xiao, D.F. Ogletree, M. Salmeron, Atomic Scale Friction and Wear of Mica, Surface Science 327 (1995) 358-370.

DOI: 10.1016/0039-6028(94)00846-9

Google Scholar

[81] N.R. Jana, L. Gearheart, C.J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Physical Review E. 13 (2001) 1389-1393.

DOI: 10.1002/1521-4095(200109)13:18<1389::aid-adma1389>3.0.co;2-f

Google Scholar

[82] C.J. Murphy, T.K. Sau, C.J. Orendorff, A.M. Gole, Surface enhanced Raman spectroscopy using shaped gold nanoparticles, U.S. Patent 8241922 (2012).

Google Scholar

[83] https: /www. nanopartz. com/bare_gold_nanorods. asp.

Google Scholar

[84] P.M. Lytvyn, O. Ya. Olikh, O.S. Lytvyn, O.M. Dyachyns'ka, I.V. Prokopenko, Ultrasonic assisted nanomanipulations with atomic force microscope, Semiconductor Physics, Quantum Electronics & Optoelectronics 13 (2010) 36-42.

DOI: 10.15407/spqeo13.01.036

Google Scholar