[1]
C. T. Salling, M.G. Lagally. Fabrication of atomic-scale structures on Si (001) surfaces. Science, 265. 5171, (1994) 502-506.
DOI: 10.1126/science.265.5171.502
Google Scholar
[2]
T. Junno, S. -B. Carlsson, H. Xu, L. Montelius, L. Samuelson, Fabrication of quantum devices by Angstrom-level manipulation of nanoparticles with an atomic force microscope, Applied Physics Letters 72 (1998) 548-550.
DOI: 10.1063/1.120754
Google Scholar
[3]
A.A.G. Requicha, Nanorobots, NEMS and nanoassembly, Proc. IEEE, special issue on nanoelectronics and nanoscale processing 91 (2003) 1922-(1933).
DOI: 10.1109/jproc.2003.818333
Google Scholar
[4]
S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, B.E. Koel, H.A. Atwater, Plasmonics – a route to nanoscale optical devices, Advanced Materials 13 (2001) 1501-1505.
DOI: 10.1002/adma.200390134
Google Scholar
[5]
S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Materials 2 (2003) 229-232.
DOI: 10.1038/nmat852
Google Scholar
[6]
Lianming Tong, Tao Zhu, Zhongfan Liu, Tong Lianming Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement, Applied Physics Letters 92 (2008) 023109-1 - 023109-3.
DOI: 10.1063/1.2822418
Google Scholar
[7]
S. Decossas, F. Mazen, Th. Baron, G. Bremond, A. Souifi, Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication, Nanotechnology 14 (2003) 1272-1278.
DOI: 10.1088/0957-4484/14/12/008
Google Scholar
[8]
Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Applied Surface Science 141 (1999) 201-209.
DOI: 10.1016/s0169-4332(98)00506-6
Google Scholar
[9]
L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, P. Hakonen, Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes, Microelectronic Engineering 61-62 (2002) 687-691.
DOI: 10.1016/s0167-9317(02)00445-8
Google Scholar
[10]
A.J.M. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K.S. Novoselov, J.C. Maan, Nanolithography and manipulation of graphene using an atomic force microscope, Solid State Communications 147 (2008) 366-369.
DOI: 10.1016/j.ssc.2008.06.027
Google Scholar
[11]
T. Junno, S. -B. Carlsson, H. Q. Xu, L. Samuelson, Single-electron tunneling effects in a metallic double dot device, Applied Physics Letters 80 (2002) 667-669.
DOI: 10.1063/1.1436532
Google Scholar
[12]
R.S. Liu, D. Suyatin, H. Pettersson, L. Samuelson, Assembling ferromagnetic single-electron transistors by atomic force microscopy, Nanotechnology 18 (2007) 055302-055306.
DOI: 10.1088/0957-4484/18/5/055302
Google Scholar
[13]
S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics – A Route to Nanoscale Optical Devices, Adv. Mater. 13 (2001) 1501-1505.
DOI: 10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z
Google Scholar
[14]
L. Dong, F. Arai, M. Nakajima, P. Liu and T. Fukuda, Nanotube devices fabricated in a nano laboratory, Proc. IEEE Int'l Conf. on Robotics & Automation (Taipei, Taiwan, 2003) 3624-3629.
DOI: 10.1109/robot.2003.1242152
Google Scholar
[15]
M. -F. Yu, M. J. Dyer, G. D. Skidmore, H. W. Rohrs, X. -K. Lu, K. D. Hausman, J. R. von Her, R. S. Ruoff, Three dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10 (1999) 244-252.
DOI: 10.1088/0957-4484/10/3/304
Google Scholar
[16]
L. Roschier, J. Penttilӓ, M. Martin, P. Hakonen, M. Paalanen, U. Tapper, E. Kauppinen, C. Journet, P. Bernier, Single-electron transistor made of multi-walled carbon nanotube using scanning probe manipulation, Applied Physics Letters 75 (1999).
DOI: 10.1063/1.124495
Google Scholar
[17]
G. Li, N. Xi, H. Chen, W.J. Li, C.K.M. Fung, R.H.M. Chan, M. Zhang, T. -J. Tam, Nano-assembly of DNA Based Electronic Devices Using Atomic Force Microscopy, Proceedings of 2004 IEEElRSJ International Conference on Intelligent Robots and Systems (Sendai, Japan, 2004) 583-588.
DOI: 10.1109/iros.2004.1389415
Google Scholar
[18]
Y. Zhang, X. Hu, J. Sun, Y. Shen, J. Hu, X. Xu, Z. Shao, High-Resolution Imaging and Nano-Manipulation of Biological Structures on Surface, Microscopy Research And Technique 74 (2011) 614-626.
DOI: 10.1002/jemt.20925
Google Scholar
[19]
R. Resch, D. Lewis, S. Meltzer, N. Montoya, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Manipulation of gold nanoparticles in liquid environments using scanning force microscopy, Ultramicroscopy 82 (2000) 135-139.
DOI: 10.1016/s0304-3991(99)00152-7
Google Scholar
[20]
S. C. Minne, S. R. Manalis, A. Atalar, C. F. Quate. Independent parallel lithography using the atomic force microscope. Journal of Vacuum Science & Technology B, 14(4), (1996) 2456-2461.
DOI: 10.1116/1.588753
Google Scholar
[21]
M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate. 5× 5 2D AFM cantilever arrays a first step towards a Terabit storage device. Sensors and Actuators A: Physical, 73(1), (1999).
DOI: 10.1016/s0924-4247(98)00259-3
Google Scholar
[22]
H. Koyama, F. Oohira, M. Hosogi, G. Hashiguchi, T. Hamada. Multiprobe SPM system using optical interference patterns. IEEE Journal of Selected Topics in Quantum Electronics, 12(2), (2007) 415-422.
DOI: 10.1109/jstqe.2007.892067
Google Scholar
[23]
D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres, Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Applied Physics Letters 66 (1995) 1012-1014.
DOI: 10.1063/1.113589
Google Scholar
[24]
T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Applied Physics Letters 66 (1995) 3627-3629.
DOI: 10.1063/1.113809
Google Scholar
[25]
M. Martin, L. Roschier, P. Hakonen, U. Parts, M. Paalanen, B. Schleicher, E.I. Kauppinen, Manipulation of Ag nanoparticles utilizing noncontact Requicha Nanomanipulation with the AFM 35 atomic force microscopy, Applied Physics Letters 73 (1998).
DOI: 10.1063/1.122187
Google Scholar
[26]
T.R. Ramachandran, A. Madhukar, P. Chen, B.E. Koelc, Imaging and direct manipulation of nanoscale three-dimensional features using the noncontact atomic force microscope, J. Vac. Sci. Technol. 16 (1998) 1425-1429.
DOI: 10.1116/1.581162
Google Scholar
[27]
Z. Liu, Y. Yang, Y. Qu, Z. Dong, W.J. Li, Y. Wang, Vibration-Mode Based Real-Time Nanoimaging and Nanomanipulation, Proceedings of the 7th IEEE International Conference on Nanotechnology (Hong Kong, 2007) 515-519.
DOI: 10.1109/nano.2007.4601244
Google Scholar
[28]
C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P. Will, Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring, Nanotechnology 9 (1998) 360-364.
DOI: 10.1088/0957-4484/9/4/011
Google Scholar
[29]
A.A.G. Requicha, Nanomanipulalion with the Atomic Force Microscope, in: R. Waser (Ed. ), Nanotechnology. Volume 3: Information Technology, Wiley-VCH, Weinheim, 2008, pp.239-273.
Google Scholar
[30]
T. Hansen, A. Kuhle, A.H. Sorensen, J. Bohr, P. E. Lindelof, A technique for positioning nanoparticles using an atomic force microscope, Nanotechnology 9 (1998) 337-342.
DOI: 10.1088/0957-4484/9/4/006
Google Scholar
[31]
S. Decossas, F. Mazen, T. Baron, G. Brémond, A. Souifi, Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication, Nanotechnology 14 (2003) 1272-1278.
DOI: 10.1088/0957-4484/14/12/008
Google Scholar
[32]
R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14 (1998) 6613-6616.
DOI: 10.1021/la980386f
Google Scholar
[33]
J.P. Xu, K.J. Kwak, J.L. Lee, G. Agarwa, Lifting and Sorting of Charged Au Nanoparticles by Electrostatic Forces in Atomic Force Microscopy, Small. 6 (2010) 2105-2108.
DOI: 10.1002/smll.201000924
Google Scholar
[34]
Y. Wang, Y. Zhang, B. Li, J. Lu, J. Hu, Capturing and depositing one nanoobject at a time: Single particle dip-pen nanolithography, Applied Physics Letters 90 (2007) 133102-1 - 133102-2.
DOI: 10.1063/1.2714287
Google Scholar
[35]
A.A. Efremov, P.M. Lytvyn, A.G. Gontar, S.P. Starik, V.M. Perevertailo, I.V. Prokopenko, O.M. Kutsay, O.B. Loginova, Macro- and Nanoscopic Capillary Effect on Nanosructured Real Surface, Journal of Superhard Materials 34 (2012) P. 81-94.
DOI: 10.3103/s1063457612020025
Google Scholar
[36]
J. Toset, G. Gomila, Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces, Applied Physics Letters 96 (2010) 043117-1 - 043117-3.
DOI: 10.1063/1.3297903
Google Scholar
[37]
P.C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Optical Trapping and Manipulation of Nano-objects with an Apertureless Probe, Physical Riview Letters 88 (2002) 123601-1 - 123601-4.
DOI: 10.1103/physrevlett.88.123601
Google Scholar
[38]
P.C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Selective nanomanipulation using optical forces, Physical Riview B 66 (2002) 95405-1 - 195405-11.
DOI: 10.1103/physrevb.66.195405
Google Scholar
[39]
B. Vikramaditya, J. Nelson, Visually guided microassembly using optical microscopes and active vision, Proc. IEEE Int'l Conf. on Robotics & Automation (Albuquerque, NM, 1997) 3172-3177.
DOI: 10.1109/robot.1997.606771
Google Scholar
[40]
T. Sato, T. Kameya, H. Miyazaki and Y. Hatamura, Hand-eye system in the nano manipulation world, Proc. IEEE Int. Conf. on Robotics & Automation (Nagoya, Japan, 1995) 59-66.
DOI: 10.1109/robot.1995.525264
Google Scholar
[41]
S. Fatikow, T. Wich, H. Hulsen, T. Sievers, M. Jahnisch, Microrobot system for automatic nanohandling inside a scanning electron microscope, Proc. IEEE Int'l Conf. on Robotics & Automation (ICRA '06) (Orlando, FL, 2006) 1401-1407.
DOI: 10.1109/robot.2006.1641905
Google Scholar
[42]
R. Saeidpourazar, N. Jalili, Nano-robotic manipulation using a RRP nanomanipulator: Part A – Mathematical modeling and development of a robust adaptive driving mechanism, Applied Mathematics and Computation. 206 (2008) 618-627.
DOI: 10.1016/j.amc.2008.05.079
Google Scholar
[43]
R. Saeidpourazar, N. Jalili, Nano-robotic manipulation using a RRP nanomanipulator: Part B – Robust control of manipulator's tip using fused visual servoing and force sensor feedbacks Applied Mathematics and Computation. 206 (2008) 628-642.
DOI: 10.1016/j.amc.2008.05.078
Google Scholar
[44]
G. Li, N. Xi, M. Yu, W. -K. Fung, Development of Augmented Reality System for AFM-Based Nanomanipulation, IEEE/ASME Transactions on Mechatronics 9 (2004) 358-365.
DOI: 10.1109/tmech.2004.828651
Google Scholar
[45]
G. Li, N. Xi, T. Donna, H. Wang, In situ sensing and manipulation of molecules in biological samples using a nanorobotic system, Nanomedicine: Nanotechnology, Biology, and Medicine 1 (2005) 31-40.
DOI: 10.1016/j.nano.2004.11.005
Google Scholar
[46]
H. Xie, D.S. Haliyo, S. Regnier, Parallel imaging/manipulation force microscopy, Applied Physics Letters 94 (2009) 153106-1 - 153106-3.
DOI: 10.1063/1.3119686
Google Scholar
[47]
R. Resch, C. Baur, A. Bugacov, B.E. Koel, P.M. Echternach, A. Madhukar, N. Montoya, A.A.G. Requicha, P. Will, Linking and manipulation of gold multi-nanoparticle structures using dithiols and scanning force microscopy, J. Physical Chemistry B 103 (1999).
DOI: 10.1021/jp984508o
Google Scholar
[48]
S. Meltzer, R. Resch, B.E. Koel, M.E. Thompson, A. Madhukar, A.A.G. Requicha, P. Will, Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticles, Langmuir. 17 (2001) 1713-1718.
DOI: 10.1021/la001170s
Google Scholar
[49]
R. Resch, S. Meltzer, T. Vallant, H. Hoffmann, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will, Immobilizing Au nanoparticles on SiO2 surfaces using octadecylsiloxane mono-layers, Langmuir. 17 (2001) 5666-5670.
DOI: 10.1021/la001296p
Google Scholar
[50]
O. Vidoni, S. Neumeier, N. Bardou, J. -L. Pelouard, Self-Assembly of Gold Nanoclusters on Molecularly Modified GaAs, Journal of Cluster Science 14 (2003) P. 325-336.
DOI: 10.1023/b:jocl.0000005067.63818.39
Google Scholar
[51]
E. Harel, S.E. Meltzer, A.A. G. Requicha, M.E. Thompson, B.E. Koel, Fabrication of Polystyrene Latex Nanostructures by Nanomanipulation and Thermal Processing, Nano Lett. 5 (2005) 2624-2629.
DOI: 10.1021/nl0342592
Google Scholar
[52]
R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, Jie Han, Improved fabrication approach for carbon nanotube probe devices, Applied Physics Letters 77 (2005) 3453-3455.
DOI: 10.1063/1.1328046
Google Scholar
[53]
Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires, Nature Nanotechnology 5 (2010) 218-224.
DOI: 10.1038/nnano.2010.4
Google Scholar
[54]
N.D. Jiao, Y.C. Wang, N. Xi, Z. Dong, AFM based anodic oxidation and its application to oxidative cutting and welding of CNT, Sci China Ser E-Tech Sci 52 (2009) 3149-3157.
DOI: 10.1007/s11431-009-0154-9
Google Scholar
[55]
A. Tafazzoli, M. Sitti, Dynamic Behavior and Simulation of Nanoparticle Sliding during Nanoprobe-based Positioning, Proceedings of IMECE'04 ASME International Mechanical Engineering Congress (Anaheim, CA, 2004) 1-8.
DOI: 10.1115/imece2004-62470
Google Scholar
[56]
Q. Zhou, P. Kallio, F. Arai, T. Fukuda, K. N. Koivo, Model for Operating Spherical Micro Objects, Proceedings of the 1999 International Symposium on Micromechatronics and Human Science (Nagoya, 1999) 79-85.
DOI: 10.1109/mhs.1999.819986
Google Scholar
[57]
E.M.A. Abdel-Rahman, A.H. Nayfeh, Parametric Identification of Contact Forces Using AFM, Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (Taipei, Taiwan, 2004) 541-547.
DOI: 10.1109/icmens.2004.1509008
Google Scholar
[58]
J.E. Sader, Frequency Response of Cantilever Beams Immersed in Viscous Fluids with Applications to the Atomic Force Microscope, Journal of Applied Physics 84 (1998) 64-76.
DOI: 10.1063/1.368002
Google Scholar
[59]
M. Ashhab, M.V. Salapaka, M. Dahleh, I. Mezic, Dynamical Analysis and Control of Microcantilevers, Automatica 35 (1999) 1663-1670.
DOI: 10.1016/s0005-1098(99)00077-1
Google Scholar
[60]
N.A. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, Scanning Local-acceleration Microscopy, Journal Vacuum Science and Technology B 14 (1996) 794-799.
Google Scholar
[61]
A. Sebastian, M.V. Salapaka, D.J. Chen, Harmonic and Power Balance Tools for Tapping Mode Atomic Force Microscope, Journal of Applied Physics 89 (2001) 6473-6480.
DOI: 10.1063/1.1365440
Google Scholar
[62]
A. Tafazzoli, C. Pawashe, M. Sitti, Atomic Force Microscope based Two- dimensional Assembly of Micro/Nanoparticles, The sixth IEEE International Symposium on Assembly and Task Planning (Montreal, Que, 2005) 230-235.
DOI: 10.1109/isatp.2005.1511478
Google Scholar
[63]
A. Menciassi, A. Eisinberg, I. Izzo, P. Dario, From Macro" to "Micro, Manipulation: Models and Experiments, IEEE/ASME Transactions on Mechatronics 9 (2004) 311-320.
DOI: 10.1109/tmech.2004.828657
Google Scholar
[64]
E. Fischbach, D.E. Krause, V.M. Mostepanenko, M. Novello, New Constraints on Ultrashort-ranged Yukawa Interactions from Atomic Force Microscopy, Physical Review D. 64 (2001) 64-76.
DOI: 10.1103/physrevd.64.075010
Google Scholar
[65]
A. Meurk, Microscopic Stick-slip in Friction Force Microscopy, Tribology Letters 8 (2000) 161-169.
Google Scholar
[66]
S. Saito, H. T. Miyazaki, T. Sato, K. Takahashi, Kinematics of Mechanical and Adhesional Micromanipulation under a Scanning Electron Microscope, Journal of Applied Physics 92 (2002) 5140-5149.
DOI: 10.1063/1.1512313
Google Scholar
[67]
R.W. Stark, G. Schitter, A. Stemmer, Velocity Dependent Friction Laws in Contact mode Atomic Force Microscopy, Ultramicroscopy 100 (2004) 309-317.
DOI: 10.1016/j.ultramic.2003.11.011
Google Scholar
[68]
S. Salapaka, M. Dahleh, A Model for Friction in Atomic Force Microscopy, Proceedings of the American Control Conference (Chicago, IL, 2000) 2102-2107 vol. 3.
DOI: 10.1109/acc.2000.879572
Google Scholar
[69]
S.M. Dutta. Dynamics Hysteresis Modeling and Applications. Master's thesis, Rice University, (2004).
Google Scholar
[70]
J.M. Carlson, A.A. Batista, Constitutive Relation for the Friction between Lubricated Surfaces, Physical Review E. 53 (1996) 4153-4165.
DOI: 10.1103/physreve.53.4153
Google Scholar
[71]
B.N.J. Persson, Sliding Friction: Physical Principles and Applications. Nano Science and Technology, Germany, Springer, (2000).
Google Scholar
[72]
A. Lemaitre, Rearangements and Dilatancy for Sheared Dense Materials, Physical Review Letters 89 (2002) 4153-4165.
Google Scholar
[73]
A. Lemaitre, J. Carlson, Boundary Lubrication with a Glassy Interface, Physical Review E. 69 (2004) 061611.
Google Scholar
[74]
B.V. Derjaguin, V.M. Muller, Yu.P. Toropov, Effect of contact deformations on the adhesion of particles, J. Colloid. Interface Sci. 53 (1975) 314-326.
DOI: 10.1016/0021-9797(75)90018-1
Google Scholar
[75]
B.V. Derjaguin, Y.I. Rabinovich, N.V. Churaev, Direct measurement of molecular forces Nature 272 (1978) 313-318.
DOI: 10.1038/272313a0
Google Scholar
[76]
E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Guntherodt, Velocity Dependence of Atomic Friction, Physical Review Letters 84 (2000) 1172-1175.
DOI: 10.1103/physrevlett.84.1172
Google Scholar
[77]
S. Fujisawa, Y. Sugawara, S. Ito, S. Mishima, T. Okada, S. Morita, The Two- dimensional Stick-slip Phenomenon with Atomic Resolution, Nanotechnology 4 (1993) 138-142.
DOI: 10.1088/0957-4484/4/3/002
Google Scholar
[78]
R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.J. Guntherodt, Atomic Scale Stick slip Processes on Cu(111), Physical Review B. 60 (1999) 301-304.
DOI: 10.1103/physrevb.60.r11301
Google Scholar
[79]
A. Schirmeisen, L. Jansen, H. Fuchs, Tip-jump Statistics of Stick-slip Friction, Physical Review B. 71 (2005) 301-304.
DOI: 10.1103/physrevb.71.245403
Google Scholar
[80]
J. Hu, S.D. Xiao, D.F. Ogletree, M. Salmeron, Atomic Scale Friction and Wear of Mica, Surface Science 327 (1995) 358-370.
DOI: 10.1016/0039-6028(94)00846-9
Google Scholar
[81]
N.R. Jana, L. Gearheart, C.J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Physical Review E. 13 (2001) 1389-1393.
DOI: 10.1002/1521-4095(200109)13:18<1389::aid-adma1389>3.0.co;2-f
Google Scholar
[82]
C.J. Murphy, T.K. Sau, C.J. Orendorff, A.M. Gole, Surface enhanced Raman spectroscopy using shaped gold nanoparticles, U.S. Patent 8241922 (2012).
Google Scholar
[83]
https: /www. nanopartz. com/bare_gold_nanorods. asp.
Google Scholar
[84]
P.M. Lytvyn, O. Ya. Olikh, O.S. Lytvyn, O.M. Dyachyns'ka, I.V. Prokopenko, Ultrasonic assisted nanomanipulations with atomic force microscope, Semiconductor Physics, Quantum Electronics & Optoelectronics 13 (2010) 36-42.
DOI: 10.15407/spqeo13.01.036
Google Scholar