Assessment on the Release of Magnetite Nanoparticles Embedded with PVA Nanofiber in Hydrodynamics

Article Preview

Abstract:

Magnetite nanoparticle with average size 7-10 nm was embedded with biocompatible polyvinyl alcohol nanofiber and the average diameter of nanofiber is 115 nm. The nanofiber was further assembled over polymeric mesh to analyse the release mechanism of nanoparticles from polymer nanofiber. A hydrodynamics setup was constructed to study this system. Prior to hydrodynamics the nanofiber was allowed to react with water in static mode and observed that the magnetite nanoparticles were released from the nanofiber with increase in time. UV-Visible Spectrophotometer is used for analysis of absorbance and transmittance of polyvinyl alcohol-magnetite nanoparticles solution, nanofiber and films. High-resolution scanning electron microscopy is used to analyze the dimension of nanofiber; High-resolution transmission electron microscopy is used to find the size of magnetite nanoparticles. Here, an online spectroscopic technique was used to study the release mechanism of nanoparticles from nanofibers samples of different layers during hydrodynamics. The results reveal that the quantity of magnetite nanoparticles can be controlled by embedding into nanofibers during hydrodynamics. Also, the spectroscopic results indicate the quantity of nanoparticles released from nanofiber. This mechanism can be utilized to control the required quantity of nanoparticles to release at particular location through a polymer mesh assembly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-41

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nguyen T.K. Thanh.: Magnetic Nanoparticles: From Fabrication to Clinical Applications. CRC Press, USA, (2012).

Google Scholar

[2] S. Laurent, D. Forge, M. Port, A. Roch , C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications . Chem. Rev. 108(2008).

DOI: 10.1021/cr068445e

Google Scholar

[3] L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112(2012) 5818-5878.

DOI: 10.1021/cr300068p

Google Scholar

[4] K. Turcheniuk, A.V. Tarasevych, V.P. Kukhar, R. Boukherroub, S. Szunerits, Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale.  5(2013) 10729-10752.

DOI: 10.1039/c3nr04131j

Google Scholar

[5] N. Tobias, S. Bernhard, H. Heinrich, H. Margarete, V.R. Brigitte, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Mag. Mag. Mat. 293(2005) 483–496.

Google Scholar

[6] G. Paradossi, F. Cavalieri, E. Chiessi, C. Spagnoli, M.K. Cowman, Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J. Mater. Sci. Mater. Med. 14 (2003) 687-691.

DOI: 10.1023/a:1024907615244

Google Scholar

[7] N. Alexandre, J. Ribeiro, A. Gärtner, T. Pereira, I. Amorim, J. Fragoso, A. Lopes, J. Fernandes, E. Costa, A. Santos-Silva, M. Rodrigues, J.D. Santos, A.C. Maurício, A. LLuís, Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies. J. Biomed. Mater. Res. A. 102(2014).

DOI: 10.1002/jbm.a.35098

Google Scholar

[8] R.C. DiLuccio, M.A. Hussain, D. Coffin-Beach, G. Torosian, E. Shefter, A.R. Hurwitz, Sustained-release oral delivery of theophylline by use of polyvinyl alcohol and polyvinyl alcohol-methyl acrylate polymers. J. Pharm. Sci.  83(1994) 104-106.

DOI: 10.1002/jps.2600830124

Google Scholar

[9] K. Morimoto, A. Nagayasu, S. Fukanoki, K. Morisaka, S. HHyon, Y. Ikada, Evaluation of polyvinyl alcohol hydrogel as a sustained-release vehicle for rectal administration of indomethacin. Pharm. Res. 6(1989) 338-341.

DOI: 10.1111/j.2042-7158.1990.tb06567.x

Google Scholar

[10] C. Stuart, McBain, H.P. Humphrey, Yiu, Jon, Dobson Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine. 3(2008)169–180.

Google Scholar

[11] M. Morteza, S. Abdolreza, I. Mohammad, Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles.J. Phys. Chem. C. 113 (2009) 9573–9580.

DOI: 10.1021/jp9001516

Google Scholar

[12] A. Abolfazl, M. Haleh, Z. Nosratollah, M. Rahmati, B. Amin, D. Soodabeh, Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomedicine. 7 (2012) 511–526.

DOI: 10.2147/ijn.s24326

Google Scholar

[13] A.B. Debrassi, C.A. Rodrigues, N. Nedelko, A. Ślawska-Waniewska, P. Dłużewski, K. Sobczak, J.M. Greneche, Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomater. 7(2011).

DOI: 10.1016/j.actbio.2011.05.001

Google Scholar

[14] J.H. Lee, K.J. Chen, S.H. Noh, M.A. Garcia, H. Wang, W.Y. Lin, H. Jeong, B.J. Kong, D.B. Stout, J. Cheon, H.R. Tseng, On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl.  52(2013).

DOI: 10.1002/anie.201207721

Google Scholar

[15] R. Sensenig, Y. Sapir, C. MacDonald, S. Cohen, B. Polyak, Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine. 7(2012)1425-1442.

DOI: 10.2217/nnm.12.109

Google Scholar

[16] S.L. McGill, C.L. Cuylear, N.L. Adolphi, M. Osiński, H.D. Smyth, Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans. Nanobioscience.  8(2009)33-42.

DOI: 10.1109/tnb.2009.2017292

Google Scholar

[17] H. Rudolf, D. Silvio, M. Robert, Z.  Matthias, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Cond. Matter. 18(2006) S2919-S2934.

DOI: 10.1088/0953-8984/18/38/s26

Google Scholar

[18] K. Sibnath, B. Dipankar, M. Tapas Kumar, V.R. Raju, The flow of magnetic nanoparticles in magnetic drug targeting. RSC Adv. 1 (2011) 238-246.

Google Scholar

[19] H. Hao, J. Wen, L. Fang, Z. Xiaobo, M. Shaohua, W. Yao, G. Zhongwei, Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagneticnanofibers as a potential tissue engineering scaffold. RSC Adv. 3 (2013) 879-886.

DOI: 10.1039/c2ra22726f

Google Scholar

[20] T.C. Lin, F.H. Lin, J.C. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. ActaBiomater. 8(2012) 2704-2711.

DOI: 10.1016/j.actbio.2012.03.045

Google Scholar

[21] L. Fan, Q. Qing, M. Ni Yasushi, Preparation of magnetic polyvinyl alcohol Composite nanofibers with homogenously dispersed nanoparticles and high water resistance. Textile Research Journal. 83(2013) 510-518.

DOI: 10.1177/0040517512444334

Google Scholar

[22] Vikram S, Dhakshnamoorthy M, Vasanthakumari R, Rajamani AR, Rangarajan M, Tsuzuki T. Tuning the Magnetic Properties of Iron Oxide Nanoparticles by a Room-Temperature Air-Atmosphere (RTAA) Co-Precipitation Method. J Nanosci Nanotechnol. 15(2015).

DOI: 10.1166/jnn.2015.9544

Google Scholar

[23] M.H. Christie, T. Patrina, A.P. Nicholas,  Water Solubility Characteristics of Poly(vinyl alcohol) and Gels Prepared by Freezing/Thawing Processes, Water Soluble Polymers , Kluwer Academic publications, USA, 2002, pp.31-40.

DOI: 10.1007/0-306-46915-4_3

Google Scholar

[24] K. Jagadeeshwar, P.D. Abhijit, Mechanical and Swelling Properties of Poly (vinyl alcohol) and Hyaluronic Acid Gels used in Biomaterial Systems - a Comparative Study. Defence Science Journal. 64(2014) 222-229.

DOI: 10.14429/dsj.64.7320

Google Scholar

[25] M.L. Meng, L. Shanghua, H.K. Hyung, K. Hyuck, B.L. Hyung, MamounMuhammed , K. Do Kyung, Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. J. Mater. Chem. 20(2010) 444-447.

DOI: 10.1039/b918416c

Google Scholar

[26] G.D. Zulauf, B.S. Trembly, A.J. Giustini, B.R. Flint, R.R. Strawbridge, P.J. Hoopes, Targeting of systemically-delivered magnetic nanoparticle hyperthermia using a noninvasive, static, external magnetic field. Proc. SPIE. Int. Soc. Opt. Eng. 3(2013).

DOI: 10.1117/12.2008816

Google Scholar

[27] P.F. Susan, L.M. Rachel, T.F. Steven,D. Sanja, K. Nishanth, L. Vinod, Optical Imaging and Magnetic Field Targeting of Magnetic Nanoparticles in Tumors. ACS Nano. 4(2010)5217–5224.

DOI: 10.1021/nn101427t

Google Scholar

[28] G. Rakesh, and K. Sakhrat, Magnetic Field-Controlled Release of Paclitaxel Drug from Functionalized Magnetoelectric Nanoparticles. Particle & Particle Systems Characterization. 31(2014) 605–611.

DOI: 10.1002/ppsc.201300238

Google Scholar

[29] L. Norbert, K. Patrick, W. Frank, E. Dietmar, F.T. Andreas, T. Lutz, Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging. J. Mag. Mag. Mat. 380(2015)266–270.

Google Scholar

[30] H.D. Liu, W. Xu, S.G. Wang, Z.J. Ke, Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery. Applied Mathematics and Mechanics.  29(2008)1341-1349.

DOI: 10.1007/s10483-008-1009-y

Google Scholar

[31] K.I.H. Kuraishi, S. Nakano, S. Kubota, H. Tonami, M. Toda, N. Toma, S. Matsushima K. Hamada, S. Ogawa, W. Taki, Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J. Biomed. Mater. Res. B Appl. Biomater.  88(2009).

DOI: 10.1002/jbm.b.31173

Google Scholar