[1]
Nguyen T.K. Thanh.: Magnetic Nanoparticles: From Fabrication to Clinical Applications. CRC Press, USA, (2012).
Google Scholar
[2]
S. Laurent, D. Forge, M. Port, A. Roch , C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications . Chem. Rev. 108(2008).
DOI: 10.1021/cr068445e
Google Scholar
[3]
L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112(2012) 5818-5878.
DOI: 10.1021/cr300068p
Google Scholar
[4]
K. Turcheniuk, A.V. Tarasevych, V.P. Kukhar, R. Boukherroub, S. Szunerits, Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale. 5(2013) 10729-10752.
DOI: 10.1039/c3nr04131j
Google Scholar
[5]
N. Tobias, S. Bernhard, H. Heinrich, H. Margarete, V.R. Brigitte, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Mag. Mag. Mat. 293(2005) 483–496.
Google Scholar
[6]
G. Paradossi, F. Cavalieri, E. Chiessi, C. Spagnoli, M.K. Cowman, Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J. Mater. Sci. Mater. Med. 14 (2003) 687-691.
DOI: 10.1023/a:1024907615244
Google Scholar
[7]
N. Alexandre, J. Ribeiro, A. Gärtner, T. Pereira, I. Amorim, J. Fragoso, A. Lopes, J. Fernandes, E. Costa, A. Santos-Silva, M. Rodrigues, J.D. Santos, A.C. Maurício, A. LLuís, Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies. J. Biomed. Mater. Res. A. 102(2014).
DOI: 10.1002/jbm.a.35098
Google Scholar
[8]
R.C. DiLuccio, M.A. Hussain, D. Coffin-Beach, G. Torosian, E. Shefter, A.R. Hurwitz, Sustained-release oral delivery of theophylline by use of polyvinyl alcohol and polyvinyl alcohol-methyl acrylate polymers. J. Pharm. Sci. 83(1994) 104-106.
DOI: 10.1002/jps.2600830124
Google Scholar
[9]
K. Morimoto, A. Nagayasu, S. Fukanoki, K. Morisaka, S. HHyon, Y. Ikada, Evaluation of polyvinyl alcohol hydrogel as a sustained-release vehicle for rectal administration of indomethacin. Pharm. Res. 6(1989) 338-341.
DOI: 10.1111/j.2042-7158.1990.tb06567.x
Google Scholar
[10]
C. Stuart, McBain, H.P. Humphrey, Yiu, Jon, Dobson Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine. 3(2008)169–180.
Google Scholar
[11]
M. Morteza, S. Abdolreza, I. Mohammad, Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles.J. Phys. Chem. C. 113 (2009) 9573–9580.
DOI: 10.1021/jp9001516
Google Scholar
[12]
A. Abolfazl, M. Haleh, Z. Nosratollah, M. Rahmati, B. Amin, D. Soodabeh, Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomedicine. 7 (2012) 511–526.
DOI: 10.2147/ijn.s24326
Google Scholar
[13]
A.B. Debrassi, C.A. Rodrigues, N. Nedelko, A. Ślawska-Waniewska, P. Dłużewski, K. Sobczak, J.M. Greneche, Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomater. 7(2011).
DOI: 10.1016/j.actbio.2011.05.001
Google Scholar
[14]
J.H. Lee, K.J. Chen, S.H. Noh, M.A. Garcia, H. Wang, W.Y. Lin, H. Jeong, B.J. Kong, D.B. Stout, J. Cheon, H.R. Tseng, On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 52(2013).
DOI: 10.1002/anie.201207721
Google Scholar
[15]
R. Sensenig, Y. Sapir, C. MacDonald, S. Cohen, B. Polyak, Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine. 7(2012)1425-1442.
DOI: 10.2217/nnm.12.109
Google Scholar
[16]
S.L. McGill, C.L. Cuylear, N.L. Adolphi, M. Osiński, H.D. Smyth, Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans. Nanobioscience. 8(2009)33-42.
DOI: 10.1109/tnb.2009.2017292
Google Scholar
[17]
H. Rudolf, D. Silvio, M. Robert, Z. Matthias, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Cond. Matter. 18(2006) S2919-S2934.
DOI: 10.1088/0953-8984/18/38/s26
Google Scholar
[18]
K. Sibnath, B. Dipankar, M. Tapas Kumar, V.R. Raju, The flow of magnetic nanoparticles in magnetic drug targeting. RSC Adv. 1 (2011) 238-246.
Google Scholar
[19]
H. Hao, J. Wen, L. Fang, Z. Xiaobo, M. Shaohua, W. Yao, G. Zhongwei, Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagneticnanofibers as a potential tissue engineering scaffold. RSC Adv. 3 (2013) 879-886.
DOI: 10.1039/c2ra22726f
Google Scholar
[20]
T.C. Lin, F.H. Lin, J.C. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. ActaBiomater. 8(2012) 2704-2711.
DOI: 10.1016/j.actbio.2012.03.045
Google Scholar
[21]
L. Fan, Q. Qing, M. Ni Yasushi, Preparation of magnetic polyvinyl alcohol Composite nanofibers with homogenously dispersed nanoparticles and high water resistance. Textile Research Journal. 83(2013) 510-518.
DOI: 10.1177/0040517512444334
Google Scholar
[22]
Vikram S, Dhakshnamoorthy M, Vasanthakumari R, Rajamani AR, Rangarajan M, Tsuzuki T. Tuning the Magnetic Properties of Iron Oxide Nanoparticles by a Room-Temperature Air-Atmosphere (RTAA) Co-Precipitation Method. J Nanosci Nanotechnol. 15(2015).
DOI: 10.1166/jnn.2015.9544
Google Scholar
[23]
M.H. Christie, T. Patrina, A.P. Nicholas, Water Solubility Characteristics of Poly(vinyl alcohol) and Gels Prepared by Freezing/Thawing Processes, Water Soluble Polymers , Kluwer Academic publications, USA, 2002, pp.31-40.
DOI: 10.1007/0-306-46915-4_3
Google Scholar
[24]
K. Jagadeeshwar, P.D. Abhijit, Mechanical and Swelling Properties of Poly (vinyl alcohol) and Hyaluronic Acid Gels used in Biomaterial Systems - a Comparative Study. Defence Science Journal. 64(2014) 222-229.
DOI: 10.14429/dsj.64.7320
Google Scholar
[25]
M.L. Meng, L. Shanghua, H.K. Hyung, K. Hyuck, B.L. Hyung, MamounMuhammed , K. Do Kyung, Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. J. Mater. Chem. 20(2010) 444-447.
DOI: 10.1039/b918416c
Google Scholar
[26]
G.D. Zulauf, B.S. Trembly, A.J. Giustini, B.R. Flint, R.R. Strawbridge, P.J. Hoopes, Targeting of systemically-delivered magnetic nanoparticle hyperthermia using a noninvasive, static, external magnetic field. Proc. SPIE. Int. Soc. Opt. Eng. 3(2013).
DOI: 10.1117/12.2008816
Google Scholar
[27]
P.F. Susan, L.M. Rachel, T.F. Steven,D. Sanja, K. Nishanth, L. Vinod, Optical Imaging and Magnetic Field Targeting of Magnetic Nanoparticles in Tumors. ACS Nano. 4(2010)5217–5224.
DOI: 10.1021/nn101427t
Google Scholar
[28]
G. Rakesh, and K. Sakhrat, Magnetic Field-Controlled Release of Paclitaxel Drug from Functionalized Magnetoelectric Nanoparticles. Particle & Particle Systems Characterization. 31(2014) 605–611.
DOI: 10.1002/ppsc.201300238
Google Scholar
[29]
L. Norbert, K. Patrick, W. Frank, E. Dietmar, F.T. Andreas, T. Lutz, Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging. J. Mag. Mag. Mat. 380(2015)266–270.
Google Scholar
[30]
H.D. Liu, W. Xu, S.G. Wang, Z.J. Ke, Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery. Applied Mathematics and Mechanics. 29(2008)1341-1349.
DOI: 10.1007/s10483-008-1009-y
Google Scholar
[31]
K.I.H. Kuraishi, S. Nakano, S. Kubota, H. Tonami, M. Toda, N. Toma, S. Matsushima K. Hamada, S. Ogawa, W. Taki, Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J. Biomed. Mater. Res. B Appl. Biomater. 88(2009).
DOI: 10.1002/jbm.b.31173
Google Scholar