Synthesis of PBMA-b-PGMA Block Copolymers via ICAR ATRP and their Application in Polymer/Titanium Dioxide Hybrid Materials

Article Preview

Abstract:

Well-defined functional block copolymers, polybutyl methacrylate-b-polyglycidyl methacrylate (PBMA-b-PGMA), were successfully synthesized via initiators for continuous activator regeneration atom transfer radical polymerization ( ICAR ATRP) with pentamethyldiethylene-triamine (PMDETA) as a ligand and copper bromide (CuBr2 ) as a catalyst with concentration of 500 ppm. The PBMA-b-PGMA grafted with titanium dioxide (TiO2 ) nanoparticles was obtained through the reaction between the epoxide on the PGMA segment and amine group on the surface of modified TiO2 nanoparticles. Results showed that the PBMA-b-PGMA block copolymer with about same length of PBMA and PGMA segment could get highest graft ratio and about 17%wt TiO2 nanoparticles were successfully grafted onto the PBMA-b-PGMA block copolymer. The sizes of the PBMA-b-PGMA grafted nanoparticles were about 74 nm in ethyl acetate. The PBMA-b-PGMA grafted TiO2 nanoparticles showed very good dispensability in organic solvent (e.g. ethyl acetate) and polymer matrix. Polymethyl methacrylate (PMMA) containing 0.5%wt PBMA-b-PGMA grafted TiO2 nanoparticles showed strong absorption at about 300 nm and good transparency in visible region, which was attributed to good dispensability of PBMA-b-PGMA grafted TiO2 nanoparticles in PMMA matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-73

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Matyjaszewski, J. S. Wang, Macromolecules, 30(1997), 2216-2218.

Google Scholar

[2] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules, 28(1995) 1721-1723.

Google Scholar

[3] V. Percec, B. Barboiu, Macromolecules, 28(1995) 7970-7972.

Google Scholar

[4] J. S. Wang, K. Matyjaszewski, J. Am. Chem. Soc., 117(1995) 5614-5615.

Google Scholar

[5] W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci., 32 (2007) 93-146.

Google Scholar

[6] K. Matyjaszewski, Macromolecules, 45 (2012) 4015-4039.

Google Scholar

[7] K. Matyjaszewski, N. V. Tsarevsky, J. Am. Chem. Soc., 136(2014).

Google Scholar

[8] Y. Shen, H. Tang, S. Ding, Prog. Polym. Sci., 29(2004) 1053-1078.

Google Scholar

[9] D. Konkolewicz, A. J. D. Magenau, S. E. Averick, A. Simakova, H. He, K. Matyjaszewski, Macromolecules, 45(2012), 4461-4468.

DOI: 10.1021/ma300887r

Google Scholar

[10] W. Jakubowski, K. Matyjaszewski, Macromolecules, 38(2005) 4139-4146.

Google Scholar

[11] N. V. Tsarevsky, W. Jakubowski, J. Polym. Sci., Part A: Polym. Chem., 49(2011) 918-925.

Google Scholar

[12] K. Sanat, Kumar, J. Nicolas, Macromolecules, 46(2013) 3199-3214.

Google Scholar

[13] H. Zou, S. Wu, J. Shen, Chem. Rev., 108(2008) 3893-957.

Google Scholar

[14] R. A. Vaia, J. F. Maguire, Chem. Mater., 19(2007) 2736-2751.

Google Scholar

[15] A. Rungta, B. Natarajan, T. Neely, D. Dukes, L. S. Schadler, B. C. Benicewicz, Macromolecules, 45 (2012) 9303-9311.

DOI: 10.1021/ma3018876

Google Scholar

[16] Y. Tran, P. Auroy, J. Am. Chem. Soc. 123(2001) 3644-3654.

Google Scholar

[17] X. Wang, X. Song, M. Lin, H. Wang, Y. Zhao, W. Zhong, Q. Du, Polymer, 48( 2007) 5834-5838.

Google Scholar

[18] X. Fan, L. Lin, P. B. Messersmith, Composites Science and Technology, 66(2006) 1198-1204.

Google Scholar

[19] P. Mansky, Y. Liu, E. Huang, T. P. Russel, C. Hawker, Science, 275(1997) 1458-1460.

Google Scholar

[20] Y. Shin, D. Lee, K. Lee, K.H. Ahn, B. Kim, J. Ind. Eng. Chem., 14(2008) 515-519.

Google Scholar

[21] L. Mueller, W. Jakubowski, W. Tang, K. Matyjaszewski, Macromolecules, 40(2007) 6464-6472.

Google Scholar