Preparation and Characterization of Cellulose Crystallites via Fe(III)-, Co(II)- and Ni(II)-Assisted Dilute Sulfuric Acid Catalyzed Hydrolysis Process

Abstract:

Article Preview

Hydrolyzing the cellulose amorphous regions with high selectivity while protecting the crystallite phases unaltered during acid hydrolysis is still a great challenge in nanocellulose industry. Due to this reason, transition metal based catalysts such as Fe (NO3)3-, Co (NO3)2- and Ni (NO3)2metal salts were chosen as promoter to co-catalyze with H2SO4 in order to develop a facile hydrolysis technique for the preparation of cellulose crystallites inform nanodimension from native cellulose source. This study investigated the hydrolysis efficiency of three different transition metals (Fe3+, Co2+ and Ni2+) on cellulose crystallinity index, structure and morphology of the products.Results showed that the transition metal salts (Ni2+, Co2+ and Fe3+) were capable to selectively degraded cellulose amorphous structure with increase of crystallite sizes (8.12-27.8 nm) and improved of crystallinity index (65.5-70.3 %), as compared to native cellulose. Furthermore, surface morphology study indicated the cellulose fibers were successfully disintegrated into smaller fragments (diameter ranges of 18.5-31.5 nm) with spider-web-like nanostructured surfaces. Higher oxidation state of Fe (III)-cation with trivalent state rendered more effective hydrolysis effect in preparing the cellulose crystallites as compared to divalent state of Co (II)- and Ni (II)-cations.

Info:

Periodical:

Pages:

96-109

Citation:

Y. W. Chen et al., "Preparation and Characterization of Cellulose Crystallites via Fe(III)-, Co(II)- and Ni(II)-Assisted Dilute Sulfuric Acid Catalyzed Hydrolysis Process", Journal of Nano Research, Vol. 41, pp. 96-109, 2016

Online since:

May 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] Q. Lu, Tang, L., Lin, F., Wang, S., Chen, Y., Chen, X., Huang, B., Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis, Cellulose, 21, (2014), 3497-3506.

DOI: https://doi.org/10.1007/s10570-014-0376-2

[2] W. Li, Yue, J., Liu, S., Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites, Ultrason Sonochem, 19, (2012), 479-485.

DOI: https://doi.org/10.1016/j.ultsonch.2011.11.007

[3] H. Liu, Liu, D., Yao, F., Wu, Q., Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites, Bioresource Technology, 101, (2010), 5685-5692.

DOI: https://doi.org/10.1016/j.biortech.2010.02.045

[4] H. A. Silvério, Neto, W. P. F., Dantas, N. O., Pasquini, D., Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Industrial Crops and Products, 44, (2013), 427-436.

DOI: https://doi.org/10.1016/j.indcrop.2012.10.014

[5] J. Li, Zhang, X., Zhang, M., Xiu, H., He, H., Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst, Carbohydr Polym, 117, (2015), 917-922.

[6] S. R. Kamireddy, Li, J., Tucker, M., Degenstein, J., Ji, Y., Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover, Industrial & Engineering Chemistry Research, 52, (2013), 1775-1782.

DOI: https://doi.org/10.1021/ie3019609

[7] I. Y. A. Fatah, Khalil, H., Hossain, M. S., Aziz, A. A., Davoudpour, Y., Dungani, R., Bhat, A., Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials, Polymers, 6, (2014).

DOI: https://doi.org/10.3390/polym6102611

[8] M. Mora‐Pale, Meli, L., Doherty, T. V., Linhardt, R. J., Dordick, J. S., Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass, Biotechnology and bioengineering, 108, (2011), 1229-1245.

DOI: https://doi.org/10.1002/bit.23108

[9] P. Alvira, Tomas-Pejo, E., Ballesteros, M., Negro, M. J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour Technol, 101, (2010), 4851-4861.

DOI: https://doi.org/10.1016/j.biortech.2009.11.093

[10] M. B. Yahya, Lee, H. V., Hamid, S. B. A., Preparation of Nanocellulose via Transition Metal Salt-Catalyzed Hydrolysis Pathway, BioResources, 10, (2015), 7627-7639.

DOI: https://doi.org/10.15376/biores.10.4.7627-7639

[11] M. Z. Karim, Chowdhury, Z. Z., Hamid, S. B. A., Ali, M. E., Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst, Materials, 7, (2014), 6982-6999.

DOI: https://doi.org/10.3390/ma7106982

[12] L. Liu, Sun, J., Cai, C., Wang, S., Pei, H., Zhang, J., Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation, Bioresource Technology, 100, (2009), 5865-5871.

DOI: https://doi.org/10.1016/j.biortech.2009.06.048

[13] N. Wang, Zhang, J., Wang, H., Li, Q., Wei, S. a., Wang, D., Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst, Bioresource Technology, 173, (2014), 399-405.

DOI: https://doi.org/10.1016/j.biortech.2014.09.125

[14] H. Wei, Donohoe, B., Vinzant, T., Ciesielski, P., Wang, W., Gedvilas, L., Zeng, Y., Johnson, D., Ding, S. -Y., Himmel, M., Tucker, M., Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass, Biotechnology for Biofuels, 4, (2011).

DOI: https://doi.org/10.1186/1754-6834-4-48

[15] J. Li, Xiu, H., Zhang, M., Wang, H., Ren, Y., Ji, Y., Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts, Current Organic Chemistry, 17, (2013), 1617-1623.

DOI: https://doi.org/10.2174/13852728113179990071

[16] X. Cao, Peng, X., Sun, S., Zhong, L., Chen, W., Wang, S., Sun, R. C., Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates, Carbohydr Polym, 118, (2015), 44-51.

DOI: https://doi.org/10.1016/j.carbpol.2014.10.069

[17] L. Segal, Creely, J., Martin, A., Conrad, C., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal, 29, (1959), 786-794.

DOI: https://doi.org/10.1177/004051755902901003

[18] X. Y. Tan, Abd Hamid, S. B., Lai, C. W., Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis, Biomass and Bioenergy, 81, (2015), 584-591.

DOI: https://doi.org/10.1016/j.biombioe.2015.08.016

[19] C. Maepa, Jayaramudu, J., Okonkwo, J., Ray, S., Sadiku, E., Ramontja, J., Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel, International Journal of Polymer Analysis and Characterization, 20, (2015), 99-109.

DOI: https://doi.org/10.1080/1023666x.2014.961118

[20] J. Li, Zhang, X., Zhang, M., Xiu, H., He, H., Optimization of selective acid hydrolysis of cellulose for microcrystalline cellulose using FeCl3, BioResources, 9, (2014), 1334-1345.

DOI: https://doi.org/10.15376/biores.9.1.1334-1345

[21] I. Shahabi-Ghahafarrokhi, Khodaiyan, F., Mousavi, M., Yousefi, H., Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound, Fibers and Polymers, 16, (2015), 529-536.

DOI: https://doi.org/10.1007/s12221-015-0529-4

[22] P. Lu, Hsieh, Y. -L., Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydrate Polymers, 87, (2012), 564-573.

DOI: https://doi.org/10.1016/j.carbpol.2011.08.022

[23] C. J. Chirayil, Joy, J., Mathew, L., Mozetic, M., Koetz, J., Thomas, S., Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Industrial Crops and Products, 59, (2014), 27-34.

DOI: https://doi.org/10.1016/j.indcrop.2014.04.020

[24] E. Kopania, Wietecha, J., Ciechańska, D., Studies on isolation of cellulose fibres from waste plant biomass, Fibres & Textiles in Eastern Europe, (2012).

[25] K. Das, Ray, D., Bandyopadhyay, N., Sengupta, S., Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM, Journal of Polymers and the Environment, 18, (2010).

DOI: https://doi.org/10.1007/s10924-010-0167-2

[26] X. Cao, Wang, X., Ding, B., Yu, J., Sun, G., Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers, Carbohydrate polymers, 92, (2013), 2041-(2047).

[27] S. B. A. Hamid, Chowdhury, Z. Z., Karim, M. Z., Catalytic Extraction of Microcrystalline Cellulose (MCC) from Elaeis guineensis using Central Composite Design (CCD), BioResources, 9, (2014), 7403-7426.

DOI: https://doi.org/10.15376/biores.9.4.7403-7426

[28] N. Y. N. N. M. I. I. Yahya, Extraction and characterization of cellulose from pandan leaves (Pandanusamaryllifolius Roxb. ), Research Journal of Chemistry and Environment, 18, (2014).

[29] W. Chen, Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P., Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process, Cellulose, 18, (2011), 433-442.

DOI: https://doi.org/10.1007/s10570-011-9497-z

[30] M. Jonoobi, Khazaeian, A., Tahir, P. M., Azry, S. S., Oksman, K., Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process, Cellulose, 18, (2011), 1085-1095.

DOI: https://doi.org/10.1007/s10570-011-9546-7

[31] R. Li, Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J., Cellulose whiskers extracted from mulberry: A novel biomass production, Carbohydrate Polymers, 76, (2009), 94-99.

DOI: https://doi.org/10.1016/j.carbpol.2008.09.034

[32] M. Cheng, Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., Zhu, M., Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant, Journal of Materials Chemistry A, 2, (2014).

DOI: https://doi.org/10.1039/c3ta13653a

[33] H. Kargarzadeh, Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M., Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers, Cellulose, 19, (2012).

DOI: https://doi.org/10.1007/s10570-012-9684-6

[34] Y. Cao, Jiang, Y., Song, Y., Cao, S., Miao, M., Feng, X., Fang, J., Shi, L., Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth, Carbohydrate Polymers, 131, (2015), 152-158.

DOI: https://doi.org/10.1016/j.carbpol.2015.05.063