[1]
Q. Lu, Tang, L., Lin, F., Wang, S., Chen, Y., Chen, X., Huang, B., Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis, Cellulose, 21, (2014), 3497-3506.
DOI: 10.1007/s10570-014-0376-2
Google Scholar
[2]
W. Li, Yue, J., Liu, S., Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites, Ultrason Sonochem, 19, (2012), 479-485.
DOI: 10.1016/j.ultsonch.2011.11.007
Google Scholar
[3]
H. Liu, Liu, D., Yao, F., Wu, Q., Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites, Bioresource Technology, 101, (2010), 5685-5692.
DOI: 10.1016/j.biortech.2010.02.045
Google Scholar
[4]
H. A. Silvério, Neto, W. P. F., Dantas, N. O., Pasquini, D., Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Industrial Crops and Products, 44, (2013), 427-436.
DOI: 10.1016/j.indcrop.2012.10.014
Google Scholar
[5]
J. Li, Zhang, X., Zhang, M., Xiu, H., He, H., Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst, Carbohydr Polym, 117, (2015), 917-922.
DOI: 10.1016/j.carbpol.2014.10.028
Google Scholar
[6]
S. R. Kamireddy, Li, J., Tucker, M., Degenstein, J., Ji, Y., Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover, Industrial & Engineering Chemistry Research, 52, (2013), 1775-1782.
DOI: 10.1021/ie3019609
Google Scholar
[7]
I. Y. A. Fatah, Khalil, H., Hossain, M. S., Aziz, A. A., Davoudpour, Y., Dungani, R., Bhat, A., Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials, Polymers, 6, (2014).
DOI: 10.3390/polym6102611
Google Scholar
[8]
M. Mora‐Pale, Meli, L., Doherty, T. V., Linhardt, R. J., Dordick, J. S., Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass, Biotechnology and bioengineering, 108, (2011), 1229-1245.
DOI: 10.1002/bit.23108
Google Scholar
[9]
P. Alvira, Tomas-Pejo, E., Ballesteros, M., Negro, M. J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour Technol, 101, (2010), 4851-4861.
DOI: 10.1016/j.biortech.2009.11.093
Google Scholar
[10]
M. B. Yahya, Lee, H. V., Hamid, S. B. A., Preparation of Nanocellulose via Transition Metal Salt-Catalyzed Hydrolysis Pathway, BioResources, 10, (2015), 7627-7639.
DOI: 10.15376/biores.10.4.7627-7639
Google Scholar
[11]
M. Z. Karim, Chowdhury, Z. Z., Hamid, S. B. A., Ali, M. E., Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst, Materials, 7, (2014), 6982-6999.
DOI: 10.3390/ma7106982
Google Scholar
[12]
L. Liu, Sun, J., Cai, C., Wang, S., Pei, H., Zhang, J., Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation, Bioresource Technology, 100, (2009), 5865-5871.
DOI: 10.1016/j.biortech.2009.06.048
Google Scholar
[13]
N. Wang, Zhang, J., Wang, H., Li, Q., Wei, S. a., Wang, D., Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst, Bioresource Technology, 173, (2014), 399-405.
DOI: 10.1016/j.biortech.2014.09.125
Google Scholar
[14]
H. Wei, Donohoe, B., Vinzant, T., Ciesielski, P., Wang, W., Gedvilas, L., Zeng, Y., Johnson, D., Ding, S. -Y., Himmel, M., Tucker, M., Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass, Biotechnology for Biofuels, 4, (2011).
DOI: 10.1186/1754-6834-4-48
Google Scholar
[15]
J. Li, Xiu, H., Zhang, M., Wang, H., Ren, Y., Ji, Y., Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts, Current Organic Chemistry, 17, (2013), 1617-1623.
DOI: 10.2174/13852728113179990071
Google Scholar
[16]
X. Cao, Peng, X., Sun, S., Zhong, L., Chen, W., Wang, S., Sun, R. C., Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates, Carbohydr Polym, 118, (2015), 44-51.
DOI: 10.1016/j.carbpol.2014.10.069
Google Scholar
[17]
L. Segal, Creely, J., Martin, A., Conrad, C., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal, 29, (1959), 786-794.
DOI: 10.1177/004051755902901003
Google Scholar
[18]
X. Y. Tan, Abd Hamid, S. B., Lai, C. W., Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis, Biomass and Bioenergy, 81, (2015), 584-591.
DOI: 10.1016/j.biombioe.2015.08.016
Google Scholar
[19]
C. Maepa, Jayaramudu, J., Okonkwo, J., Ray, S., Sadiku, E., Ramontja, J., Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel, International Journal of Polymer Analysis and Characterization, 20, (2015), 99-109.
DOI: 10.1080/1023666x.2014.961118
Google Scholar
[20]
J. Li, Zhang, X., Zhang, M., Xiu, H., He, H., Optimization of selective acid hydrolysis of cellulose for microcrystalline cellulose using FeCl3, BioResources, 9, (2014), 1334-1345.
DOI: 10.15376/biores.9.1.1334-1345
Google Scholar
[21]
I. Shahabi-Ghahafarrokhi, Khodaiyan, F., Mousavi, M., Yousefi, H., Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound, Fibers and Polymers, 16, (2015), 529-536.
DOI: 10.1007/s12221-015-0529-4
Google Scholar
[22]
P. Lu, Hsieh, Y. -L., Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydrate Polymers, 87, (2012), 564-573.
DOI: 10.1016/j.carbpol.2011.08.022
Google Scholar
[23]
C. J. Chirayil, Joy, J., Mathew, L., Mozetic, M., Koetz, J., Thomas, S., Isolation and characterization of cellulose nanofibrils from Helicteres isora plant, Industrial Crops and Products, 59, (2014), 27-34.
DOI: 10.1016/j.indcrop.2014.04.020
Google Scholar
[24]
E. Kopania, Wietecha, J., Ciechańska, D., Studies on isolation of cellulose fibres from waste plant biomass, Fibres & Textiles in Eastern Europe, (2012).
Google Scholar
[25]
K. Das, Ray, D., Bandyopadhyay, N., Sengupta, S., Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM, Journal of Polymers and the Environment, 18, (2010).
DOI: 10.1007/s10924-010-0167-2
Google Scholar
[26]
X. Cao, Wang, X., Ding, B., Yu, J., Sun, G., Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers, Carbohydrate polymers, 92, (2013), 2041-(2047).
DOI: 10.1016/j.carbpol.2012.11.085
Google Scholar
[27]
S. B. A. Hamid, Chowdhury, Z. Z., Karim, M. Z., Catalytic Extraction of Microcrystalline Cellulose (MCC) from Elaeis guineensis using Central Composite Design (CCD), BioResources, 9, (2014), 7403-7426.
DOI: 10.15376/biores.9.4.7403-7426
Google Scholar
[28]
N. Y. N. N. M. I. I. Yahya, Extraction and characterization of cellulose from pandan leaves (Pandanusamaryllifolius Roxb. ), Research Journal of Chemistry and Environment, 18, (2014).
Google Scholar
[29]
W. Chen, Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P., Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process, Cellulose, 18, (2011), 433-442.
DOI: 10.1007/s10570-011-9497-z
Google Scholar
[30]
M. Jonoobi, Khazaeian, A., Tahir, P. M., Azry, S. S., Oksman, K., Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process, Cellulose, 18, (2011), 1085-1095.
DOI: 10.1007/s10570-011-9546-7
Google Scholar
[31]
R. Li, Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J., Cellulose whiskers extracted from mulberry: A novel biomass production, Carbohydrate Polymers, 76, (2009), 94-99.
DOI: 10.1016/j.carbpol.2008.09.034
Google Scholar
[32]
M. Cheng, Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., Zhu, M., Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant, Journal of Materials Chemistry A, 2, (2014).
DOI: 10.1039/c3ta13653a
Google Scholar
[33]
H. Kargarzadeh, Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M., Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers, Cellulose, 19, (2012).
DOI: 10.1007/s10570-012-9684-6
Google Scholar
[34]
Y. Cao, Jiang, Y., Song, Y., Cao, S., Miao, M., Feng, X., Fang, J., Shi, L., Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth, Carbohydrate Polymers, 131, (2015), 152-158.
DOI: 10.1016/j.carbpol.2015.05.063
Google Scholar