Microstructural Modification of Brush-Plated Nanocrystalline Cr by High Current Pulsed Electron Beam Irradiation

Article Preview

Abstract:

Cr layer was fabricated on 40Cr steel by electric brush plating process and then treated by high current pulsed electron beam irradiation technique. Surface microstructures of specimens before and after the irradiation were investigated. Results show that Cr surface is composed of uniformly distributed small nodule units which are composed of fine Cr particles smaller than 100nm. After high current pulsed electron beam treatment, many cracks are found on surface. The main reason is possibly due to the quasi-static thermal stresses accumulated along the surface of the specimens during the electron beam treatment. The surface grain grow from Cr particles because of heating by electron beam, and their size is less than 200nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-95

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Seok, N. M. JadeedR. Y. Lin, Sputter-deposited nanocrystalline Cr and CrN coatings on steels, Surface & Coatings Technology, 138(2001) 14–22.

DOI: 10.1016/s0257-8972(00)01120-8

Google Scholar

[2] B. Wu, B. S. Xu, B. Zhang, X. D. JingC. L. Liu, Automatic brush plating: An update on brush plating, Materials Letters, 60(2006) 1673-1677.

DOI: 10.1016/j.matlet.2005.11.098

Google Scholar

[3] J. Mu, L. Zhao, S. Sun, Z. JiangJ. Lian, Dislocation-mediated creep process in nanocrystalline Cu, Chinese Physics B, 22(2013) 457-465.

DOI: 10.1088/1674-1056/22/3/037303

Google Scholar

[4] D. Wu, J. Zhang, J. C. Huang, H. BeiT. G. Nieh, Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals, Scripta Materialia, 68(2013) 118–121.

DOI: 10.1016/j.scriptamat.2012.09.025

Google Scholar

[5] C. D. Gu, J. L. Zhang, W. Q. Bai, Y. Y. Tong, X. L. WangJ. P. Tu, Electro-Brush Plating from Deep Eutectic Solvent: A Case of Nanocrystalline Ni Coatings with Superior Mechanical Property and Corrosion Resistance, Journal of the Electrochemical Society, 162(2015).

DOI: 10.1149/2.0431504jes

Google Scholar

[6] J. Mu, L. Zhao, S. Sun, Z. JiangJ. Lian, Preparation of Nanocrystalline Cu Films by Brush-Plating, Integrated Ferroelectrics An International Journal, 137(2012) 52-60.

DOI: 10.1080/10584587.2012.687266

Google Scholar

[7] G. Wang, J. Lian, Z. Jiang, L. QinQ. Jiang, Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature, Journal of Applied Physics, 106(2009) 086105-1-086105-3.

DOI: 10.1063/1.3247583

Google Scholar

[8] J. Hu, S. Han, G. Sun, S. Sun, Z. Jiang, G. WangJ. Lian, Effect of strain rate on tensile properties of electric brush-plated nanocrystalline copper, Materials Science & Engineering A, 618(2014) 621–628.

DOI: 10.1016/j.msea.2014.08.078

Google Scholar

[9] Z. ZhongS. J. Clouser, Nickel–tungsten alloy brush plating for engineering applications, Surface & Coatings Technology, 240(2014) 380–386.

DOI: 10.1016/j.surfcoat.2013.12.059

Google Scholar

[10] J. Xu, X. XieX. Zhong, Double glow surface alloying of low carbon steel with electric brush plating Ni interlayer for improvement in corrosion resistance, Surface & Coatings Technology, 168(2003) 156-160.

DOI: 10.1016/s0257-8972(02)00861-7

Google Scholar

[11] S. B. Hu, J. P. Tu, Z. Mei, Z. Z. LiX. B. Zhang, Adhesion strength and high temperature wear behaviour of ion plating TiN composite coating with electric brush plating Ni-W interlayer, Surface & Coatings Technology, volume 141(2001) 174-181.

DOI: 10.1016/s0257-8972(01)01041-6

Google Scholar

[12] A. Gulzar, J. I. Akhter, M. Ahmad, G. Ali, M. MahmoodM. Ajmal, Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting, Applied Surface Science, 255(2009) 8527–8532.

DOI: 10.1016/j.apsusc.2009.06.011

Google Scholar

[13] L. J. Chai, Z. M. Zhou, Z. P. Xiao, J. Tu, Y. P. WangW. J. Huang, Evolution of surface microstructure of Cu-50Cr alloy treated by high current pulsed electron beam, Science China, 3(2015) 1-8.

DOI: 10.1007/s11431-015-5774-7

Google Scholar

[14] J. J. Hu, G. B. Zhang, H. B. XuY. F. Chen, Microstructure characteristics and properties of 40Cr steel treated by high current pulsed electron beam, Materials Technology, 27(2012) 300-303.

DOI: 10.1179/175355511x13171168481358

Google Scholar

[15] Z. Zhang, J. Cai, L. Ji, X. Wang, Y. Li, S. Yang, P. Lv, X. HouQ. Guan, Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam, Protection of Metals & Physical Chemistry of Surfaces, 50(2014).

DOI: 10.1134/s2070205114050207

Google Scholar

[16] J. Zou, T. Grosdidier, K. ZhangC. Dong, Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel, Acta Materialia, 54(2006) 5409–5419.

DOI: 10.1016/j.actamat.2006.05.053

Google Scholar

[17] J. X. Zou, K. M. Zhang, T. Grosdidier, C. Dong, Y. Qin, S. Z. HaoD. Z. Yang, Orientation-dependent deformation on 316L stainless steel induced by high-current pulsed electron beam irradiation, Materials Science & Engineering A, 2013(2008).

DOI: 10.1016/j.msea.2006.07.179

Google Scholar

[18] X. D. Zhang, S. Z. Hao, X. N. Li, C. DongT. Grosdidier, Surface modification of pure titanium by pulsed electron beam, Applied Surface Science, 257(2011) 5899–5902.

DOI: 10.1016/j.apsusc.2011.01.136

Google Scholar

[19] J. C. Oh, D. K. ChooS. Lee, Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation, Surface & Coatings Technology, 127(2000) 76–85.

DOI: 10.1016/s0257-8972(99)00664-7

Google Scholar

[20] B. S. Xu, H. D. Wang, S. Y. DongB. Jiang, Fretting wear-resistance of Ni-base electro-brush plating coating reinforced by nano-alumina grains, Materials Letters, 60(2006) 710–713.

DOI: 10.1016/j.matlet.2005.10.021

Google Scholar

[21] D. Bober, M. KumarT. Rupert, Nanocrystalline grain boundary engineering: Increasing Ʃ3 boundary fraction in pure Ni with thermomechanical treatments, Acta Materialia, 86(2015) 43-54.

DOI: 10.1016/j.actamat.2014.11.034

Google Scholar

[22] B. Subramanian, S. MohanS. Jayakrishnan, Structural, microstructural and corrosion properties of brush plated copper–tin alloy coatings, Surface & Coatings Technology, 201(2006) 1145–1151.

DOI: 10.1016/j.surfcoat.2006.01.042

Google Scholar

[23] J. TanX. U. Bin-Shi, Microstructure and Strengthening Mechanism of Nanocrystalline Coatings by Brush Plating, China Surface Engineering, 20(2007) 11-14.

Google Scholar

[24] G. Y. DZ. G, Theory and Practice of Metal Electrodeposition, Springer Science and Business Media, New York, (2011).

Google Scholar

[25] Z. Zhang, S. Yang, P. Lv, Y. Li, X. Wang, X. HouQ. Guan, The microstructures and corrosion properties of polycrystalline copper induced by high-current pulsed electron beam, Applied Surface Science, 294(2014) 9–14.

DOI: 10.1016/j.apsusc.2013.12.178

Google Scholar

[26] J. Zou, K. Zhang, T. GrosdidierC. Dong, Analysis of the evaporation and re-condensation processes induced by pulsed beam treatments, International Journal of Heat & Mass Transfer, 64(2013) 1172–1182.

DOI: 10.1016/j.ijheatmasstransfer.2013.05.036

Google Scholar

[27] K. M. Zhang, J. X. Zou, B. BolleT. Grosdidier, Evolution of residual stress states in surface layers of an AISI D2 steel treated by low energy high current pulsed electron beam, Vacuum, 87(2013) 60-68.

DOI: 10.1016/j.vacuum.2012.03.061

Google Scholar

[28] D. Wardecki, R. Przeniosło, A. N. Fitch, M. BukowskiR. Hempelmann, Crystal microstructure of annealed nanocrystalline Chromium studied by synchrotron radiation diffraction, Journal of Nanoparticle Research, 13(2011) 1151-1161.

DOI: 10.1007/s11051-010-0107-z

Google Scholar

[29] Q. F. Guan, H. Zou, G. T. Zou, A. M. Wu, S. Z. Hao, J. X. Zou, Y. Qin, C. DongQ. Y. Zhang, Surface nanostructure and amorphous state of a low carbon steel induced by high-current pulsed electron beam, Surface & Coatings Technology, 196(2005).

DOI: 10.1016/j.surfcoat.2004.08.104

Google Scholar