[1]
J. W. Seok, N. M. JadeedR. Y. Lin, Sputter-deposited nanocrystalline Cr and CrN coatings on steels, Surface & Coatings Technology, 138(2001) 14–22.
DOI: 10.1016/s0257-8972(00)01120-8
Google Scholar
[2]
B. Wu, B. S. Xu, B. Zhang, X. D. JingC. L. Liu, Automatic brush plating: An update on brush plating, Materials Letters, 60(2006) 1673-1677.
DOI: 10.1016/j.matlet.2005.11.098
Google Scholar
[3]
J. Mu, L. Zhao, S. Sun, Z. JiangJ. Lian, Dislocation-mediated creep process in nanocrystalline Cu, Chinese Physics B, 22(2013) 457-465.
DOI: 10.1088/1674-1056/22/3/037303
Google Scholar
[4]
D. Wu, J. Zhang, J. C. Huang, H. BeiT. G. Nieh, Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals, Scripta Materialia, 68(2013) 118–121.
DOI: 10.1016/j.scriptamat.2012.09.025
Google Scholar
[5]
C. D. Gu, J. L. Zhang, W. Q. Bai, Y. Y. Tong, X. L. WangJ. P. Tu, Electro-Brush Plating from Deep Eutectic Solvent: A Case of Nanocrystalline Ni Coatings with Superior Mechanical Property and Corrosion Resistance, Journal of the Electrochemical Society, 162(2015).
DOI: 10.1149/2.0431504jes
Google Scholar
[6]
J. Mu, L. Zhao, S. Sun, Z. JiangJ. Lian, Preparation of Nanocrystalline Cu Films by Brush-Plating, Integrated Ferroelectrics An International Journal, 137(2012) 52-60.
DOI: 10.1080/10584587.2012.687266
Google Scholar
[7]
G. Wang, J. Lian, Z. Jiang, L. QinQ. Jiang, Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature, Journal of Applied Physics, 106(2009) 086105-1-086105-3.
DOI: 10.1063/1.3247583
Google Scholar
[8]
J. Hu, S. Han, G. Sun, S. Sun, Z. Jiang, G. WangJ. Lian, Effect of strain rate on tensile properties of electric brush-plated nanocrystalline copper, Materials Science & Engineering A, 618(2014) 621–628.
DOI: 10.1016/j.msea.2014.08.078
Google Scholar
[9]
Z. ZhongS. J. Clouser, Nickel–tungsten alloy brush plating for engineering applications, Surface & Coatings Technology, 240(2014) 380–386.
DOI: 10.1016/j.surfcoat.2013.12.059
Google Scholar
[10]
J. Xu, X. XieX. Zhong, Double glow surface alloying of low carbon steel with electric brush plating Ni interlayer for improvement in corrosion resistance, Surface & Coatings Technology, 168(2003) 156-160.
DOI: 10.1016/s0257-8972(02)00861-7
Google Scholar
[11]
S. B. Hu, J. P. Tu, Z. Mei, Z. Z. LiX. B. Zhang, Adhesion strength and high temperature wear behaviour of ion plating TiN composite coating with electric brush plating Ni-W interlayer, Surface & Coatings Technology, volume 141(2001) 174-181.
DOI: 10.1016/s0257-8972(01)01041-6
Google Scholar
[12]
A. Gulzar, J. I. Akhter, M. Ahmad, G. Ali, M. MahmoodM. Ajmal, Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting, Applied Surface Science, 255(2009) 8527–8532.
DOI: 10.1016/j.apsusc.2009.06.011
Google Scholar
[13]
L. J. Chai, Z. M. Zhou, Z. P. Xiao, J. Tu, Y. P. WangW. J. Huang, Evolution of surface microstructure of Cu-50Cr alloy treated by high current pulsed electron beam, Science China, 3(2015) 1-8.
DOI: 10.1007/s11431-015-5774-7
Google Scholar
[14]
J. J. Hu, G. B. Zhang, H. B. XuY. F. Chen, Microstructure characteristics and properties of 40Cr steel treated by high current pulsed electron beam, Materials Technology, 27(2012) 300-303.
DOI: 10.1179/175355511x13171168481358
Google Scholar
[15]
Z. Zhang, J. Cai, L. Ji, X. Wang, Y. Li, S. Yang, P. Lv, X. HouQ. Guan, Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam, Protection of Metals & Physical Chemistry of Surfaces, 50(2014).
DOI: 10.1134/s2070205114050207
Google Scholar
[16]
J. Zou, T. Grosdidier, K. ZhangC. Dong, Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel, Acta Materialia, 54(2006) 5409–5419.
DOI: 10.1016/j.actamat.2006.05.053
Google Scholar
[17]
J. X. Zou, K. M. Zhang, T. Grosdidier, C. Dong, Y. Qin, S. Z. HaoD. Z. Yang, Orientation-dependent deformation on 316L stainless steel induced by high-current pulsed electron beam irradiation, Materials Science & Engineering A, 2013(2008).
DOI: 10.1016/j.msea.2006.07.179
Google Scholar
[18]
X. D. Zhang, S. Z. Hao, X. N. Li, C. DongT. Grosdidier, Surface modification of pure titanium by pulsed electron beam, Applied Surface Science, 257(2011) 5899–5902.
DOI: 10.1016/j.apsusc.2011.01.136
Google Scholar
[19]
J. C. Oh, D. K. ChooS. Lee, Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation, Surface & Coatings Technology, 127(2000) 76–85.
DOI: 10.1016/s0257-8972(99)00664-7
Google Scholar
[20]
B. S. Xu, H. D. Wang, S. Y. DongB. Jiang, Fretting wear-resistance of Ni-base electro-brush plating coating reinforced by nano-alumina grains, Materials Letters, 60(2006) 710–713.
DOI: 10.1016/j.matlet.2005.10.021
Google Scholar
[21]
D. Bober, M. KumarT. Rupert, Nanocrystalline grain boundary engineering: Increasing Ʃ3 boundary fraction in pure Ni with thermomechanical treatments, Acta Materialia, 86(2015) 43-54.
DOI: 10.1016/j.actamat.2014.11.034
Google Scholar
[22]
B. Subramanian, S. MohanS. Jayakrishnan, Structural, microstructural and corrosion properties of brush plated copper–tin alloy coatings, Surface & Coatings Technology, 201(2006) 1145–1151.
DOI: 10.1016/j.surfcoat.2006.01.042
Google Scholar
[23]
J. TanX. U. Bin-Shi, Microstructure and Strengthening Mechanism of Nanocrystalline Coatings by Brush Plating, China Surface Engineering, 20(2007) 11-14.
Google Scholar
[24]
G. Y. DZ. G, Theory and Practice of Metal Electrodeposition, Springer Science and Business Media, New York, (2011).
Google Scholar
[25]
Z. Zhang, S. Yang, P. Lv, Y. Li, X. Wang, X. HouQ. Guan, The microstructures and corrosion properties of polycrystalline copper induced by high-current pulsed electron beam, Applied Surface Science, 294(2014) 9–14.
DOI: 10.1016/j.apsusc.2013.12.178
Google Scholar
[26]
J. Zou, K. Zhang, T. GrosdidierC. Dong, Analysis of the evaporation and re-condensation processes induced by pulsed beam treatments, International Journal of Heat & Mass Transfer, 64(2013) 1172–1182.
DOI: 10.1016/j.ijheatmasstransfer.2013.05.036
Google Scholar
[27]
K. M. Zhang, J. X. Zou, B. BolleT. Grosdidier, Evolution of residual stress states in surface layers of an AISI D2 steel treated by low energy high current pulsed electron beam, Vacuum, 87(2013) 60-68.
DOI: 10.1016/j.vacuum.2012.03.061
Google Scholar
[28]
D. Wardecki, R. Przeniosło, A. N. Fitch, M. BukowskiR. Hempelmann, Crystal microstructure of annealed nanocrystalline Chromium studied by synchrotron radiation diffraction, Journal of Nanoparticle Research, 13(2011) 1151-1161.
DOI: 10.1007/s11051-010-0107-z
Google Scholar
[29]
Q. F. Guan, H. Zou, G. T. Zou, A. M. Wu, S. Z. Hao, J. X. Zou, Y. Qin, C. DongQ. Y. Zhang, Surface nanostructure and amorphous state of a low carbon steel induced by high-current pulsed electron beam, Surface & Coatings Technology, 196(2005).
DOI: 10.1016/j.surfcoat.2004.08.104
Google Scholar