[1]
K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, 107 (2003) 668–677.
DOI: 10.1021/jp026731y
Google Scholar
[2]
H. Tanaka, L. Hong, M. Fukumori, R. Negishi, Y. Kobayashi, D. Tanaka, T. Ogawa, Influence of nanoparticle size to the electrical properties of naphthalenediimide on single-walled carbon nanotube wiring, Nanotechnology, 23 (2012) 215701.
DOI: 10.1088/0957-4484/23/21/215701
Google Scholar
[3]
A. Demortière, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Bégin-Colin, Size-dependent properties of magnetic iron oxide nanocrystals, Nanoscale, 3 (2011) 225–232.
DOI: 10.1039/c0nr00521e
Google Scholar
[4]
Z. Xu, F. -S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, Size-dependent catalytic activity of supported metal clusters, Nature, 372 (1994) 346–348.
DOI: 10.1038/372346a0
Google Scholar
[5]
S. Shoji, S. Nakanishi, T. Hamano, S. Kawata, Size-Dependent Mechanical Properties of Polymer-nanowires Fabricated by Two-photon Lithography, in: Symp. FFGG – Mech. Behav. Small Scales — Exp. Model., (2009).
DOI: 10.1557/proc-1224-ff06-05-dd06-05
Google Scholar
[6]
G.W. Mulholland, N.P. Bryner, C. Croarkin, Measurement of the 100 nm NIST SRM 1963 by Differential Mobility Analysis, Aerosol Sci. Technol., 31 (1999) 39–55.
DOI: 10.1080/027868299304345
Google Scholar
[7]
J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Sci. Technol., 30 (1999) 438–453.
DOI: 10.1080/027868299304480
Google Scholar
[8]
T.J. Krinke, K. Deppert, M.H. Magnusson, F. Schmidt, H. Fissan, Microscopic aspects of the deposition of nanoparticles from the gas phase, J. Aerosol Sci., 33 (2002) 1341–1359.
DOI: 10.1016/s0021-8502(02)00074-5
Google Scholar
[9]
S. -J. Yook, H. Fissan, T. Engelke, C. Asbach, T. van der Zwaag, J.H. Kim, J. Wang, D.Y.H. Pui, Classification of highly monodisperse nanoparticles of NIST-traceable sizes by TDMA and control of deposition spot size on a surface by electrophoresis, J. Aerosol Sci., 39 (2008).
DOI: 10.1016/j.jaerosci.2008.03.001
Google Scholar
[10]
H. Fissan, M.K. Kennedy, T.J. Krinke, F.E. Kruis, Nanoparticles from the Gas Phase as Building Blocks for Electrical Devices, J. Nanoparticle Res., 5 (2003) 299–310.
DOI: 10.1023/a:1025511014757
Google Scholar
[11]
N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofis. Pura E Appl., 56 (1963) 185–193.
DOI: 10.1007/bf01993343
Google Scholar
[12]
D. Hummes, S. Neumann, F. Schmidt, M. Drouml tboom, H. Fissan, K. deppert, T. Junno, J. Malm, L. Samuelson, Determination of the Size Distribution of Nanometer-Sized Particles, J. Aerosol Sci., 27 (1996) 163–164.
DOI: 10.1016/0021-8502(96)00154-1
Google Scholar
[13]
A.T. Winzer, C. Kraft, S. Bhushan, V. Stepanenko, I. Tessmer, Correcting for AFM tip induced topography convolutions in protein–DNA samples, Ultramicroscopy, 121 (2012) 8–15.
DOI: 10.1016/j.ultramic.2012.07.002
Google Scholar
[14]
S.G. Rautian, REAL SPECTRAL APPARATUS, Sov. Phys. Uspekhi, 1 (1958) 245–273.
DOI: 10.1070/pu1958v001n02abeh003099
Google Scholar
[15]
A.A. Bukharaev, N.V. Berdunov, D.V. Ovchinnikov, K.M. Salikhov, Atomic force microscopy for metrology of micro- and nanostructures, Russ. Microelectron., 26 (1997) 137–148.
Google Scholar
[16]
J.E. Griffith, D.A. Grigg, Dimensional metrology with scanning probe microscopes, J. Appl. Phys., 74 (1993) R83–R109.
DOI: 10.1063/1.354175
Google Scholar
[17]
D.L. Sedin, K.L. Rowlen, Influence of tip size on AFM roughness measurements, Appl. Surf. Sci., 182 (2001) 40–48.
DOI: 10.1016/s0169-4332(01)00432-9
Google Scholar
[18]
Z. Zeng, G. Zhu, Z. Guo, L. Zhang, X. Yan, Q. Du, R. Liu, A simple method for AFM tip characterization by polystyrene spheres, Ultramicroscopy, 108 (2008) 975–980.
DOI: 10.1016/j.ultramic.2008.04.001
Google Scholar
[19]
S. Xu, M.F. Arnsdorf, Calibration of the scanning (atomic) force microscope with gold particles, J. Microsc., 173 (1994) 199–210.
DOI: 10.1111/j.1365-2818.1994.tb03442.x
Google Scholar
[20]
Y. Wang, X. Chen, Carbon nanotubes: A promising standard for quantitative evaluation of AFM tip apex geometry, Ultramicroscopy, 107 (2007) 293–298.
DOI: 10.1016/j.ultramic.2006.08.004
Google Scholar
[21]
F. Zenhausern, M. Adrian, B.T. Heggeler-Bordier, L.M. Eng, P. Descouts, DNA and RNA polymerase/DNA complex imaged by scanning force microscopy: Influence of molecular-scale friction, Scanning, 14 (1992) 212–217.
DOI: 10.1002/sca.4950140405
Google Scholar
[22]
D. Keller, Reconstruction of STM and AFM images distorted by finite-size tips, Surf. Sci., 253 (1991) 353–364.
DOI: 10.1016/0039-6028(91)90606-s
Google Scholar
[23]
C. Odin, J.P. Aimé, Z. El Kaakour, T. Bouhacina, Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls, Surf. Sci., 317 (1994).
DOI: 10.1016/0039-6028(94)90288-7
Google Scholar
[24]
V.J. Garcia, L. Martinez, J.M. Briceno-Valero, C.H. Schilling, Dimensional metrology of nanometric spherical particles using AFM: I, model development, Probe Microsc., 1 (1997) 107–116.
Google Scholar