Electrostatic Aerosol Deposition Method for the Formation of an Ensemble of Monodisperse Particles on a Substrate

Article Preview

Abstract:

We have developed an aerosol-based technique for deposition of monodisperse ensembles of spherical SiO2 nanoparticles on the surface of single-crystal silicon substrate (1 cm2) with an average surface particle density of about 2.1±0.4 particles per μm2. The obtained samples of monodisperse ensembles SiO2 nanoparticles was characterized by scanning and transmission electron microscopy. The ensemble of deposited nanoparticles is characterized by a narrow size distribution with a modal size of 26.6 nm and a full width at half maximum of 3.5 nm according to the atomic force microscopy data. We have demonstrated the use of the obtained test structure to determine the effective radius of the tip of an atomic force microscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-62

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, 107 (2003) 668–677.

DOI: 10.1021/jp026731y

Google Scholar

[2] H. Tanaka, L. Hong, M. Fukumori, R. Negishi, Y. Kobayashi, D. Tanaka, T. Ogawa, Influence of nanoparticle size to the electrical properties of naphthalenediimide on single-walled carbon nanotube wiring, Nanotechnology, 23 (2012) 215701.

DOI: 10.1088/0957-4484/23/21/215701

Google Scholar

[3] A. Demortière, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Bégin-Colin, Size-dependent properties of magnetic iron oxide nanocrystals, Nanoscale, 3 (2011) 225–232.

DOI: 10.1039/c0nr00521e

Google Scholar

[4] Z. Xu, F. -S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, Size-dependent catalytic activity of supported metal clusters, Nature, 372 (1994) 346–348.

DOI: 10.1038/372346a0

Google Scholar

[5] S. Shoji, S. Nakanishi, T. Hamano, S. Kawata, Size-Dependent Mechanical Properties of Polymer-nanowires Fabricated by Two-photon Lithography, in: Symp. FFGG – Mech. Behav. Small Scales — Exp. Model., (2009).

DOI: 10.1557/proc-1224-ff06-05-dd06-05

Google Scholar

[6] G.W. Mulholland, N.P. Bryner, C. Croarkin, Measurement of the 100 nm NIST SRM 1963 by Differential Mobility Analysis, Aerosol Sci. Technol., 31 (1999) 39–55.

DOI: 10.1080/027868299304345

Google Scholar

[7] J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Sci. Technol., 30 (1999) 438–453.

DOI: 10.1080/027868299304480

Google Scholar

[8] T.J. Krinke, K. Deppert, M.H. Magnusson, F. Schmidt, H. Fissan, Microscopic aspects of the deposition of nanoparticles from the gas phase, J. Aerosol Sci., 33 (2002) 1341–1359.

DOI: 10.1016/s0021-8502(02)00074-5

Google Scholar

[9] S. -J. Yook, H. Fissan, T. Engelke, C. Asbach, T. van der Zwaag, J.H. Kim, J. Wang, D.Y.H. Pui, Classification of highly monodisperse nanoparticles of NIST-traceable sizes by TDMA and control of deposition spot size on a surface by electrophoresis, J. Aerosol Sci., 39 (2008).

DOI: 10.1016/j.jaerosci.2008.03.001

Google Scholar

[10] H. Fissan, M.K. Kennedy, T.J. Krinke, F.E. Kruis, Nanoparticles from the Gas Phase as Building Blocks for Electrical Devices, J. Nanoparticle Res., 5 (2003) 299–310.

DOI: 10.1023/a:1025511014757

Google Scholar

[11] N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofis. Pura E Appl., 56 (1963) 185–193.

DOI: 10.1007/bf01993343

Google Scholar

[12] D. Hummes, S. Neumann, F. Schmidt, M. Drouml tboom, H. Fissan, K. deppert, T. Junno, J. Malm, L. Samuelson, Determination of the Size Distribution of Nanometer-Sized Particles, J. Aerosol Sci., 27 (1996) 163–164.

DOI: 10.1016/0021-8502(96)00154-1

Google Scholar

[13] A.T. Winzer, C. Kraft, S. Bhushan, V. Stepanenko, I. Tessmer, Correcting for AFM tip induced topography convolutions in protein–DNA samples, Ultramicroscopy, 121 (2012) 8–15.

DOI: 10.1016/j.ultramic.2012.07.002

Google Scholar

[14] S.G. Rautian, REAL SPECTRAL APPARATUS, Sov. Phys. Uspekhi, 1 (1958) 245–273.

DOI: 10.1070/pu1958v001n02abeh003099

Google Scholar

[15] A.A. Bukharaev, N.V. Berdunov, D.V. Ovchinnikov, K.M. Salikhov, Atomic force microscopy for metrology of micro- and nanostructures, Russ. Microelectron., 26 (1997) 137–148.

Google Scholar

[16] J.E. Griffith, D.A. Grigg, Dimensional metrology with scanning probe microscopes, J. Appl. Phys., 74 (1993) R83–R109.

DOI: 10.1063/1.354175

Google Scholar

[17] D.L. Sedin, K.L. Rowlen, Influence of tip size on AFM roughness measurements, Appl. Surf. Sci., 182 (2001) 40–48.

DOI: 10.1016/s0169-4332(01)00432-9

Google Scholar

[18] Z. Zeng, G. Zhu, Z. Guo, L. Zhang, X. Yan, Q. Du, R. Liu, A simple method for AFM tip characterization by polystyrene spheres, Ultramicroscopy, 108 (2008) 975–980.

DOI: 10.1016/j.ultramic.2008.04.001

Google Scholar

[19] S. Xu, M.F. Arnsdorf, Calibration of the scanning (atomic) force microscope with gold particles, J. Microsc., 173 (1994) 199–210.

DOI: 10.1111/j.1365-2818.1994.tb03442.x

Google Scholar

[20] Y. Wang, X. Chen, Carbon nanotubes: A promising standard for quantitative evaluation of AFM tip apex geometry, Ultramicroscopy, 107 (2007) 293–298.

DOI: 10.1016/j.ultramic.2006.08.004

Google Scholar

[21] F. Zenhausern, M. Adrian, B.T. Heggeler-Bordier, L.M. Eng, P. Descouts, DNA and RNA polymerase/DNA complex imaged by scanning force microscopy: Influence of molecular-scale friction, Scanning, 14 (1992) 212–217.

DOI: 10.1002/sca.4950140405

Google Scholar

[22] D. Keller, Reconstruction of STM and AFM images distorted by finite-size tips, Surf. Sci., 253 (1991) 353–364.

DOI: 10.1016/0039-6028(91)90606-s

Google Scholar

[23] C. Odin, J.P. Aimé, Z. El Kaakour, T. Bouhacina, Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls, Surf. Sci., 317 (1994).

DOI: 10.1016/0039-6028(94)90288-7

Google Scholar

[24] V.J. Garcia, L. Martinez, J.M. Briceno-Valero, C.H. Schilling, Dimensional metrology of nanometric spherical particles using AFM: I, model development, Probe Microsc., 1 (1997) 107–116.

Google Scholar