Observation of Nucleation and Growth Mechanism of Bismuth Nano/Microparticles Prepared by Hot-Injection Method

Article Preview

Abstract:

The growth mechanisms of the nanomaterials such as Bismuth (Bi) are investigated since the understanding of the factors that affect the kinetics is fundamental to tune the crystal growth and thus to achieve new types of nanostructures and new material properties. It is concluded that Bi nano/microparticles are grown in following: classical nucleation growth theory and then most possibly unclassical oriented attachment via two kinds of effective and noneffective collisions with mass transfer. Polycrystalline Bi nano/micropowders having variety forms such as nanocrystal, nanoplate, and nano/microparticle have been synthesized successfully in a non-coordinating solvent by using hot-injection method. The X-ray powder diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive X-ray (EDX) techniques are used to characterize the nanopowders. It is achieved that Bi particles synthesized during the reaction are accumulated via hit and stick mechanism and taken out of the solution as a conglomerate wet powder without need to centrifuge the solution. The Bi is formed in hexagonal phase with preferred orientation of (012) plane along with the XRD peak shape factor of ~0.44 which indicates more Lorentzian than Gaussian character. The average diameter of the synthesized nanocrystals is about 1.86 nm. The unit cell parameters calculated by Rietveld refinement are a=4.5474 Å and c=11.8612 Å in hexagonal phase. It is observed that hexagonal nanoplates are completely surrounded by nanocrystals. Twinkling of the spherical Bi nano/microparticles attached by nanoplates is observed under a white light illumination. All the steps from nucleation to the conglomerate structure formed are visualized and respectively proved experimentally.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-126

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Fu, S. Xu, Y.-N. Lu, J.-J. Zhu, Synthesis and characterization of triangular bismuth nanoplates, Cryst. Growth Des. 5 (2005) 1379-1385. https://doi.org/10.1021/cg049686n.

DOI: 10.1021/cg049686n

Google Scholar

[2] G. Aragay, A. Puig-Font, M. Cadevall, A. Merkoçi, Surface characterizations of mercury-based electrodes with the resulting micro and nano amalgam wires and spheres formations may reveal both gained sensitivity and faced nonstability in heavy metal detection, J. Phys. Chem. C. 114 (2010).

DOI: 10.1021/jp102123w

Google Scholar

[3] A.R. Rajamani, U.B.R. Ragula, N. Kothurkar, M. Rangarajan, Nano- and micro-hexagons of bismuth on polycrystalline copper: electrodeposition and heavy metal sensing, CrystEngComm. 16 (2014) 2032-2038. https://doi.org/10.1039/C3CE41686K.

DOI: 10.1039/c3ce41686k

Google Scholar

[4] V. Jovanovski, S.B. Hočevar, B. Ogorevc, Bismuth electrodes in contemporary electroanalysis, Current Opinion in Electrochemistry. 3 (2017) 114-122. https://doi.org/10.1016/j.coelec.2017.07.008.

DOI: 10.1016/j.coelec.2017.07.008

Google Scholar

[5] F.Y. Yang, K. Liu, C.L. Chien, P.C. Searson, Large magnetoresistance and finite-size effects in electrodeposited single-crystal Bi thin films, Phys. Rev. Lett. 82 (1999) 3328-3331. https://doi.org/10.1103/PhysRevLett.82.3328.

DOI: 10.1103/physrevlett.82.3328

Google Scholar

[6] F.Y. Yang, K. Liu, K. Hong, D.H. Reich, P.C. Searson, C.L. Chien, Large magnetoresistance of electrodeposited single-crystal bismuth thin films, Science. 284 (1999) 1335-1337. https://doi.org/10.1126/science.284.5418.1335.

DOI: 10.1126/science.284.5418.1335

Google Scholar

[7] L. Li, G. Li, X. Fang, Bi-based nanowire and nanojunction arrays: fabrication and physical properties, J. Mater. Sci. Technol. 23 (2007) 166-181.

Google Scholar

[8] J.S. Son, K. Park, M.-K. Han, C. Kang, S.-G. Park, J.-H. Kim, W. Kim, S.-J. Kim, T. Hyeon, Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals, Angew. Chem. 123 (2011).

DOI: 10.1002/ange.201005023

Google Scholar

[9] A. Imamura, M. Kimura, T. Kon, S. Sunohara, N. Kobayashi, Bi-based electrochromic cell with mediator for white/black imaging, Sol. Energy Mater. Sol. Cells. 93 (2009) 2079-2082. https://doi.org/10.1016/j.solmat.2009.05.001.

DOI: 10.1016/j.solmat.2009.05.001

Google Scholar

[10] I. Švancara, C. Prior, S.B. Hočevar, J. Wang, A decade with bismuth-based electrodes in electroanalysis, Electroanalysis. 22 (2010) 1405-1420. https://doi.org/10.1002/elan.200970017.

DOI: 10.1002/elan.200970017

Google Scholar

[11] R.M. Penner, Mesoscopic metal particles and wires by electrodeposition, J. Phys. Chem. B. 106 (2002) 3339-3353. https://doi.org/10.1021/jp013219o.

DOI: 10.1021/jp013219o

Google Scholar

[12] Y. Luo, M. Hossain, C. Wang, Y. Qiao, J. An, L. Ma, M. Su, Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria, Nanoscale. 5 (2013) 687-694. https://doi.org/10.1039/C2NR33154C.

DOI: 10.1039/c2nr33154c

Google Scholar

[13] A.L. Brown, P.C. Naha, V. Benavides-Montes, H.I. Litt, A.M. Goforth, D.P. Cormode, Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle X-ray contrast agents, Chem. Mater. 26 (2014).

DOI: 10.1021/cm500077z

Google Scholar

[14] E.R. Swy, A.S. Schwartz-Duval, D.D. Shuboni, M.T. Latourette, C.L. Mallet, M. Parys, D.P. Cormode, E.M. Shapiro, Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography, Nanoscale. 6 (2014).

DOI: 10.1039/c4nr01405g

Google Scholar

[15] J. Yao, K.J. Koski, W. Luo, J.J. Cha, L. Hu, D. Kong, V.K. Narasimhan, K. Huo, Y. Cui, Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates, Nat. Commun. 5 (2014).

DOI: 10.1038/ncomms6670

Google Scholar

[16] X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, Journal of Materiomics. 1 (2015) 92-105. https://doi.org/10.1016/j.jmat.2015.01.001.

DOI: 10.1016/j.jmat.2015.01.001

Google Scholar

[17] H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renewable and Sustainable Energy Reviews. 82 (2018) 4159-4169. https://doi.org/10.1016/j.rser.2017.10.112.

DOI: 10.1016/j.rser.2017.10.112

Google Scholar

[18] X. Yu, A. Li, C. Zhao, K. Yang, X. Chen, W. Li, Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy, ACS Nano. 11 (2017).

DOI: 10.1021/acsnano.7b00476

Google Scholar

[19] N. Yu, Z. Wang, J. Zhang, Z. Liu, B. Zhu, J. Yu, M. Zhu, C. Peng, Z. Chen, Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy, Biomaterials. 161 (2018).

DOI: 10.1016/j.biomaterials.2018.01.047

Google Scholar

[20] J. Deng, S. Xu, W. Hu, X. Xun, L. Zheng, M. Su, Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer, Biomaterials. 154 (2018).

DOI: 10.1016/j.biomaterials.2017.10.048

Google Scholar

[21] B. Wu, S.-T. Lu, H. Yu, R.-F. Liao, H. Li, B.V.L. Zafitatsimo, Y.-S. Li, Y. Zhang, X.-L. Zhu, H.-G. Liu, H.-B. Xu, S.-W. Huang, Z. Cheng, Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy, Biomaterials. 159 (2018).

DOI: 10.1016/j.biomaterials.2017.12.022

Google Scholar

[22] Z. Zhuang, F. Huang, Z. Lin, H. Zhang, Aggregation-induced fast crystal growth of SnO2 nanocrystals, J. Am. Chem. Soc. 134 (2012) 16228-16234. https://doi.org/10.1021/ja305305r.

DOI: 10.1021/ja305305r

Google Scholar

[23] J. Wu, F. Qin, Z. Lu, H.-J. Yang, R. Chen, Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent, Nanoscale Res. Lett. 6 (2011) 1-8. https://doi.org/10.1186/1556-276X-6-66.

DOI: 10.1186/1556-276x-6-66

Google Scholar

[24] G. Cheng, J. Wu, F. Xiao, H. Yu, Z. Lu, X. Yu, R. Chen, Synthesis of bismuth micro- and nanospheres by a simple refluxing method, Mater. Lett. 63 (2009) 2239-2242. https://doi.org/10.1016/j.matlet.2009.07.045.

DOI: 10.1016/j.matlet.2009.07.045

Google Scholar

[25] J. Wu, H. Yang, H. Li, Z. Lu, X. Yu, R. Chen, Microwave synthesis of bismuth nanospheres using bismuth citrate as a precursor, J. Alloys Compd. 498 (2010) L8-L11. https://doi.org/10.1016/j.jallcom.2010.03.165.

DOI: 10.1016/j.jallcom.2010.03.165

Google Scholar

[26] F. Wang, R. Tang, H. Yu, P.C. Gibbons, W.E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles, Chem. Mater. 20 (2008) 3656-3662. https://doi.org/10.1021/cm8004425.

DOI: 10.1021/cm8004425

Google Scholar

[27] Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, Y. Zhong, Magnetic-field-assisted solvothermal growth of single-crystalline bismuth nanowires, Nanotechnology. 19 (2008) 1-5. https://doi.org/10.1088/0957-4484/19/11/115602.

DOI: 10.1088/0957-4484/19/11/115602

Google Scholar

[28] S. Cao, C. Guo, Y. Wang, J. Miao, Z. Zhang, Q. Liu, Template-catalyst-free growth of single crystalline bismuth nanorods by RF magnetron sputtering method, Solid State Commun. 149 (2009) 87-90. https://doi.org/10.1016/j.ssc.2008.10.003.

DOI: 10.1016/j.ssc.2008.10.003

Google Scholar

[29] R. Boldt, M. Kaiser, D. Köhler, F. Krumeich, M. Ruck, High-yield synthesis and structure of double-walled bismuth-nanotubes, Nano Lett. 10 (2010) 208-210. https://doi.org/10.1021/nl903291j.

DOI: 10.1021/nl903291j

Google Scholar

[30] C. de Mello Donegá, P. Liljeroth, D. Vanmaekelbergh, Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals, Small. 1 (2005) 1152-1162. https://doi.org/10.1002/smll.200500239.

DOI: 10.1002/smll.200500239

Google Scholar

[31] J.V. Isacker, The analysis of stellar scintillation phenomena, Q. J. R. Meteorol. Soc. 80 (1954) 251-260. https://doi.org/10.1002/qj.49708034418.

Google Scholar

[32] Y. Zhao, H. Liu, J. Liu, C. Hu, J. Wang, Bismuth onion thin film in situ grown on silicon wafer synthesized through a hydrothermal approach, Appl. Surf. Sci. 257 (2010) 102-108. https://doi.org/10.1016/j.apsusc.2010.06.044.

DOI: 10.1016/j.apsusc.2010.06.044

Google Scholar

[33] P.M. Vereecken, L. Sun, P.C. Searson, M. Tanase, D.H. Reich, C.L. Chien, Magnetotransport properties of bismuth films on p-GaAs, J. Appl. Phys. 88 (2000) 6529-6535. https://doi.org/10.1063/1.1323537.

DOI: 10.1063/1.1323537

Google Scholar

[34] S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries, J. Mater. Chem. A. 4 (2016) 10098-10104. https://doi.org/10.1039/C6TA02796B.

DOI: 10.1039/c6ta02796b

Google Scholar

[35] C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545-610. https://doi.org/10.1146/annurev.matsci.30.1.545.

DOI: 10.1146/annurev.matsci.30.1.545

Google Scholar

[36] J. Rojas, Lubricant potential of stearic acid and derivatives for the production tablets by direct compression, in: Y. Lin, Q. Peng (Eds.), Stearic Acid: Synthesis, Properties and Applications, Nova Science Publishers, New York, 2015, pp.81-98.

Google Scholar

[37] E.R. Leite, C. Ribeiro, Crystallization and Growth of Colloidal Nanocrystals, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1308-0.

Google Scholar

[38] H. Cölfen, M. Antonietti, Nonclassical crystallization, in: Mesocrystals and Nonclassical Crystallization, John Wiley & Sons, Chichester, 2008, pp.73-101. https://doi.org/10.1002/9780470994603.

DOI: 10.1002/9780470994603

Google Scholar

[39] L. Bahrig, S.G. Hickey, A. Eychmüller, Mesocrystalline materials and the involvement of oriented attachment – a review, CrystEngComm. 16 (2014) 9408-9424. https://doi.org/10.1039/C4CE00882K.

DOI: 10.1039/c4ce00882k

Google Scholar

[40] E.J.H. Lee, C. Ribeiro, E. Longo, E.R. Leite, Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals, J. Phys. Chem. B. 109 (2005) 20842-20846. https://doi.org/10.1021/jp0532115.

DOI: 10.1021/jp0532115

Google Scholar

[41] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652. https://doi.org/10.2138/am-2003-0418.

DOI: 10.2138/am-2003-0418

Google Scholar

[42] A. Tsuchiyama, Asteroid Itokawa a source of ordinary chondrites and a laboratory for surface processes, Elements. 10 (2014) 45-50. https://doi.org/10.2113/gselements.10.1.45.

DOI: 10.2113/gselements.10.1.45

Google Scholar

[43] B. Rozitis, E. MacLennan, J.P. Emery, Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA, Nature. 512 (2014) 174-176. https://doi.org/10.1038/nature13632.

DOI: 10.1038/nature13632

Google Scholar