The Investigation of Structural and Magnetic Properties at High-Temperature of Nanostructured Fe90-Mg10 Alloys Produced by Mechanical Alloying

Article Preview

Abstract:

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-145

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Chudoba, Thesis, Forschungszentrum Rossendorf, FZR- 143 (1996).

Google Scholar

[2] T. B. Massalski,, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio Vol.1. (1986).

Google Scholar

[3] R. W. Cahn and P. Haasen in: Physical Metallurgy, Structure and Stability of Alloys, Vol.1, North-Holland, Amsterdam. p.134. (1996).

Google Scholar

[4] A. Hightower, B. Fultz, R.C. Bowman, Mechanical alloying of Fe and Mg, J. Alloys and Compounds, 252. 238–244 (1997).

DOI: 10.1016/s0925-8388(96)02732-6

Google Scholar

[5] G.A. Dorofeev, E.P. Yelsukov, A.L. Ul'yanov, Mechanical Alloying of Immiscible elements in the Fe–Mg System, J. Inorg. Mater., 40, No.7, 690–699. (2004).

DOI: 10.1023/b:inma.0000034767.14276.a9

Google Scholar

[6] E. P. Yelsukov, G.A. Dorofeev, A.L. Ulyanov, Mechanism and kinetics of mechanical alloying in an immiscible Fe--Mg system, Czechoslovak J. Phys., 55, No.7. 913-921 (2005).

DOI: 10.1007/s10582-005-0092-0

Google Scholar

[7] N. Dubrovinskaia, L. Dubrovinsky & C. McCammon, Iron-magnesium alloying at high pressures and temperatures,, J. Phys. Cond. Mat. 16: S1143–S115 (2004).

DOI: 10.1088/0953-8984/16/14/024

Google Scholar

[8] N. Dubrovinskaia, L. Dubrovinsky, I. Kantor, W. A. Crichton, V. Dmitriev, V. Prakapenka, G. Shen, L Vitos, R. Ahuja, B Johansson & I. A. brikosov. Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying,, Phys. Rev. Lett. 95: 245502. (2005).

DOI: 10.1103/physrevlett.95.245502

Google Scholar

[9] X-Pert Plus software – Program for Crystallography and Rietveld Analysis, Philips Analytical (1999).

Google Scholar

[10] G.K. Williamson, W.H. Hall: Acta Metall. 1 22.

Google Scholar

[11] L. Castex, J.L. Lebrun, G. Maeder, J.M. Sprauel, Détermination de Contraintes Résiduelles par Diffraction des Rayons X, vol.22, Publications scientifiques et techniques de l'ENSAM, Paris, 1981, p.51–60.

Google Scholar

[12] A. El Mohri, A. Guittoum, K. Taibi, M. Azzaz J. Journal of Nano Research.

Google Scholar

[13] R.A. Varina, S. Lia,b, Ch. Chiua, L. Guoa, O. Morozovac, Nanocrystalline and non-rystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg–X (X = Fe, Co, Mn, B) systems Journal of Alloys and Compounds 404–406 (2005).

DOI: 10.1016/j.jallcom.2004.12.176

Google Scholar

[14] T. Khomenkoc, Z. Wronskid, J.M.D. Coey, Magnetic materials, Journal alloys and Compounds, 326 (2001) 2-6.

Google Scholar

[15] Masafumi Chiba, Hideki Hotta,TohruNobuki,Atsushi Sotoma, Toshiro Kuji, Microstructure dependence of the magnetic properties in fine Mg-Tm (Tm: Co, Fe) particles by using a mechanical alloying technique, Journal of Magnetism and Magnetic Materials (2007).

DOI: 10.1016/j.jmmm.2007.02.179

Google Scholar