The Nature of Intrinsic Stresses in Thin Copper Condensates Deposited on Solid State Substrates

Article Preview

Abstract:

Size effect for intrinsic stresses and thermodynamics of films formation established taking into account the nature of stresses in copper condensates deposited on solid state substrates. We believe that surface energy changes during layer by layer deposition in such condensates with chaotically dispersed areas (possessing different values of Young’s modulus) define the film’s mechanic parameters. The quantitative estimations of mechanical stresses are calculated for layer by layer film growth. The resulting intrinsic stresses (ISs) in copper condensates nature from local static ones, superposed within the area of a film. The latter arose due to anisotropy of interface interaction energy parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-74

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Jongste, J.P. Lokker, G.C.A.M. Janssen, S. Radelaar, J. Torres, J. Palleau, Mechanical reliability of CVD-copper thin films, Microelectr. Engng. 33 (1997) 39–46.

DOI: 10.1016/s0167-9317(96)00029-9

Google Scholar

[2] D. Gan, P.S. Ho, R. Huanga, J. Leu, J. Maiz, T. Scherban, Isothermal stress relaxation in electroplated Cu films. II. Kinetic modeling, J. Appl. Phys. 97 (2005) 103532.

DOI: 10.1063/1.1904721

Google Scholar

[3] C.R. Pichard, C.R. Tellier, A.J. Tosser, Thermal strains in thin metallic films, J. Phys. D: Appl. Phys. 13 (1980) 1325–1329.

DOI: 10.1088/0022-3727/13/7/028

Google Scholar

[4] S. Riedel, J. Rober, S.E. Schulz, T. Gebna, Stress in copper films for interconnects, Microelectr. Engng. 37-38 (1997) 151-156.

Google Scholar

[5] R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thermal stain and stress in copper thin films, Thin Solid Films 262 (1995) 142-153.

DOI: 10.1016/0040-6090(95)05834-6

Google Scholar

[6] P.J. Fisher, W.G. Peterfish, M.F. Sylvester, Method for minimizing warp and die stress in the production of an electronic assembly, U.S. Patent 5868887 (1996).

Google Scholar

[7] M. Laugier, Adhesion and internal stress in thin films of aluminium, Thin Solid Films 79 (1981) 15–20.

DOI: 10.1016/0040-6090(81)90423-5

Google Scholar

[8] M. Janda, O. Stefan, Intrinsic stress in chromium thin films measured by a Novel method, Thin Solid Films 112 (1984) 127–137.

DOI: 10.1016/0040-6090(84)90490-5

Google Scholar

[9] M. Laugier, The effect on ion bombardment on stress and adhesion in thin films of silver and aluminium, Thin Solid Films 18 (1981) 61–69.

DOI: 10.1016/0040-6090(81)90505-8

Google Scholar

[10] W.D. Nix, Mechanical properties of thin films, Metall. Trans. A 20 (1989) 2217–2245.

Google Scholar

[11] P.A. Flinn, Mechanical stresses in VLSI interconnections: origins, effects, measurement, and modeling, MRS Bull. 20 (1995) 70–73.

DOI: 10.1557/s0883769400045620

Google Scholar

[12] L.I. Maissel, R. Glang, Handbook of Thin Film Technology, McGraw-Hill Handbooks, (1970).

Google Scholar

[13] B.P. Coman, V.N. Juzevych, Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate-single-crystal silicon system, Phys. Solid State 54 (2012) 1417–1424.

DOI: 10.1134/s1063783412070207

Google Scholar

[14] K.-Y. Chan, B.S. Teo, Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique, Microelectr. J. 37 (2006) 1064–1071.

DOI: 10.1016/j.mejo.2006.04.008

Google Scholar

[15] B.P. Koman, I.M. Rovetskiy, V.M. Yuzevych, AFM study of surface of the metallic condensates on the monocrystalline silicon and energy parameters of interface interactions in the metallic condensate—semiconductor, system, Metallofiz. Noveishie Tekhnol. 37 (2015).

DOI: 10.15407/mfint.37.11.1443

Google Scholar

[16] J. Hoshen, R. Kopelman, Percolation and cluster distribution. 1. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14 (1976) 3438–3445.

DOI: 10.1103/physrevb.14.3438

Google Scholar

[17] J. de la Figuera, A.K. Schmid, K. Pohl, N.C. Bartelt, C.B. Carter, R.Q. Hwang, Glide and climb of dislocations in ultra-thin metal films, Mater. Sci. Forum 426-432 (2003) 3421-3426.

DOI: 10.4028/www.scientific.net/msf.426-432.3421

Google Scholar

[18] G. Sainath, P. Rohith, B.K. Choudhary, Size dependent deformation behaviour and dislocation mechanisms in (100) Cu nanowires, Phil. Mag. 97 (2017) 2632-2657.

DOI: 10.1080/14786435.2017.1347300

Google Scholar

[19] L.S. Palatnik, A.I. Il'inskii, Mechanical properties of metallic films, Sov. Phys. Uspekhi 11 (1969) 564–581.

DOI: 10.1070/pu1969v011n04abeh003768

Google Scholar

[20] E. Chason, P.R. Guduru, Understanding residual stress in polycrystalline thin films through real-time measurements and physical models, J. Appl. Phys. 119 (2016) 191101.

DOI: 10.1063/1.4949263

Google Scholar

[21] V.I. Sytin, V.N. Voyevodin, S.V. Shevchenko, N.D. Rybalchenko, Change of the modulus of elongation of copper depending on deformation directions, Problems Atomic Sci. Techn. 6 (2003) 32-35.

Google Scholar

[22] V.N. Juzevych, B.P. Coman, Specific features of temperature dependences of energy parameters of interfacial interactions in Crystalline Quartz–Pb and (NaCl,KCl)–Pb Systems, Phys. Solid State 56 (2014) 606–611.

DOI: 10.1134/s1063783414030366

Google Scholar

[23] I.E. Tamm, Fundamentals of the theory of electricity, Mir Publisher Moscow, (1979).

Google Scholar

[24] G.A. Maugin, Electromagnetics in Deformable Solids. Mechanics and Electrodynamics of Magneto- and Electroelastic Materials 527 (2011) 1-55.

Google Scholar

[25] S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics; North-Holland, Amsterdam, Wiley, New-York, (1962).

DOI: 10.1126/science.140.3563.168

Google Scholar

[26] P.A. Wolff, A.M. Albano, Non-equilibrium thermodynamics of interfaces including electromagnetic effects, Physica A 90 (1979) 491-508.

DOI: 10.1016/0378-4371(79)90149-3

Google Scholar

[27] V.N. Yuzevich, B.P. Coman, Modeling the relationship of mechanical and electric parameters of surface of solids, Phys. Solid State 56 (2014) 895-902.

Google Scholar

[28] N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, New York, Gordon and Breach, (1961).

Google Scholar

[29] C. Kittel, Introduction to Solid State Physics, 8th Edition, Wiley, New-York, (2005).

Google Scholar

[30] I.K. Kikoin (Ed.), Tables of Physical Constants, AtomIzdat, Moscow, (1976).

Google Scholar

[31] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Mater. Res. Lett. 4 (2016) 1–21.

DOI: 10.1080/21663831.2015.1060543

Google Scholar

[32] V.M. Yuzevych, Influence of surface on the size effect of an elastically-plastic deformable solid, Dopovidi AN UkrSSR A 8 (1984) 60–63. (in Ukrainian).

Google Scholar