[1]
J.F. Jongste, J.P. Lokker, G.C.A.M. Janssen, S. Radelaar, J. Torres, J. Palleau, Mechanical reliability of CVD-copper thin films, Microelectr. Engng. 33 (1997) 39–46.
DOI: 10.1016/s0167-9317(96)00029-9
Google Scholar
[2]
D. Gan, P.S. Ho, R. Huanga, J. Leu, J. Maiz, T. Scherban, Isothermal stress relaxation in electroplated Cu films. II. Kinetic modeling, J. Appl. Phys. 97 (2005) 103532.
DOI: 10.1063/1.1904721
Google Scholar
[3]
C.R. Pichard, C.R. Tellier, A.J. Tosser, Thermal strains in thin metallic films, J. Phys. D: Appl. Phys. 13 (1980) 1325–1329.
DOI: 10.1088/0022-3727/13/7/028
Google Scholar
[4]
S. Riedel, J. Rober, S.E. Schulz, T. Gebna, Stress in copper films for interconnects, Microelectr. Engng. 37-38 (1997) 151-156.
Google Scholar
[5]
R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thermal stain and stress in copper thin films, Thin Solid Films 262 (1995) 142-153.
DOI: 10.1016/0040-6090(95)05834-6
Google Scholar
[6]
P.J. Fisher, W.G. Peterfish, M.F. Sylvester, Method for minimizing warp and die stress in the production of an electronic assembly, U.S. Patent 5868887 (1996).
Google Scholar
[7]
M. Laugier, Adhesion and internal stress in thin films of aluminium, Thin Solid Films 79 (1981) 15–20.
DOI: 10.1016/0040-6090(81)90423-5
Google Scholar
[8]
M. Janda, O. Stefan, Intrinsic stress in chromium thin films measured by a Novel method, Thin Solid Films 112 (1984) 127–137.
DOI: 10.1016/0040-6090(84)90490-5
Google Scholar
[9]
M. Laugier, The effect on ion bombardment on stress and adhesion in thin films of silver and aluminium, Thin Solid Films 18 (1981) 61–69.
DOI: 10.1016/0040-6090(81)90505-8
Google Scholar
[10]
W.D. Nix, Mechanical properties of thin films, Metall. Trans. A 20 (1989) 2217–2245.
Google Scholar
[11]
P.A. Flinn, Mechanical stresses in VLSI interconnections: origins, effects, measurement, and modeling, MRS Bull. 20 (1995) 70–73.
DOI: 10.1557/s0883769400045620
Google Scholar
[12]
L.I. Maissel, R. Glang, Handbook of Thin Film Technology, McGraw-Hill Handbooks, (1970).
Google Scholar
[13]
B.P. Coman, V.N. Juzevych, Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate-single-crystal silicon system, Phys. Solid State 54 (2012) 1417–1424.
DOI: 10.1134/s1063783412070207
Google Scholar
[14]
K.-Y. Chan, B.S. Teo, Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique, Microelectr. J. 37 (2006) 1064–1071.
DOI: 10.1016/j.mejo.2006.04.008
Google Scholar
[15]
B.P. Koman, I.M. Rovetskiy, V.M. Yuzevych, AFM study of surface of the metallic condensates on the monocrystalline silicon and energy parameters of interface interactions in the metallic condensate—semiconductor, system, Metallofiz. Noveishie Tekhnol. 37 (2015).
DOI: 10.15407/mfint.37.11.1443
Google Scholar
[16]
J. Hoshen, R. Kopelman, Percolation and cluster distribution. 1. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14 (1976) 3438–3445.
DOI: 10.1103/physrevb.14.3438
Google Scholar
[17]
J. de la Figuera, A.K. Schmid, K. Pohl, N.C. Bartelt, C.B. Carter, R.Q. Hwang, Glide and climb of dislocations in ultra-thin metal films, Mater. Sci. Forum 426-432 (2003) 3421-3426.
DOI: 10.4028/www.scientific.net/msf.426-432.3421
Google Scholar
[18]
G. Sainath, P. Rohith, B.K. Choudhary, Size dependent deformation behaviour and dislocation mechanisms in (100) Cu nanowires, Phil. Mag. 97 (2017) 2632-2657.
DOI: 10.1080/14786435.2017.1347300
Google Scholar
[19]
L.S. Palatnik, A.I. Il'inskii, Mechanical properties of metallic films, Sov. Phys. Uspekhi 11 (1969) 564–581.
DOI: 10.1070/pu1969v011n04abeh003768
Google Scholar
[20]
E. Chason, P.R. Guduru, Understanding residual stress in polycrystalline thin films through real-time measurements and physical models, J. Appl. Phys. 119 (2016) 191101.
DOI: 10.1063/1.4949263
Google Scholar
[21]
V.I. Sytin, V.N. Voyevodin, S.V. Shevchenko, N.D. Rybalchenko, Change of the modulus of elongation of copper depending on deformation directions, Problems Atomic Sci. Techn. 6 (2003) 32-35.
Google Scholar
[22]
V.N. Juzevych, B.P. Coman, Specific features of temperature dependences of energy parameters of interfacial interactions in Crystalline Quartz–Pb and (NaCl,KCl)–Pb Systems, Phys. Solid State 56 (2014) 606–611.
DOI: 10.1134/s1063783414030366
Google Scholar
[23]
I.E. Tamm, Fundamentals of the theory of electricity, Mir Publisher Moscow, (1979).
Google Scholar
[24]
G.A. Maugin, Electromagnetics in Deformable Solids. Mechanics and Electrodynamics of Magneto- and Electroelastic Materials 527 (2011) 1-55.
Google Scholar
[25]
S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics; North-Holland, Amsterdam, Wiley, New-York, (1962).
DOI: 10.1126/science.140.3563.168
Google Scholar
[26]
P.A. Wolff, A.M. Albano, Non-equilibrium thermodynamics of interfaces including electromagnetic effects, Physica A 90 (1979) 491-508.
DOI: 10.1016/0378-4371(79)90149-3
Google Scholar
[27]
V.N. Yuzevich, B.P. Coman, Modeling the relationship of mechanical and electric parameters of surface of solids, Phys. Solid State 56 (2014) 895-902.
Google Scholar
[28]
N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, New York, Gordon and Breach, (1961).
Google Scholar
[29]
C. Kittel, Introduction to Solid State Physics, 8th Edition, Wiley, New-York, (2005).
Google Scholar
[30]
I.K. Kikoin (Ed.), Tables of Physical Constants, AtomIzdat, Moscow, (1976).
Google Scholar
[31]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Mater. Res. Lett. 4 (2016) 1–21.
DOI: 10.1080/21663831.2015.1060543
Google Scholar
[32]
V.M. Yuzevych, Influence of surface on the size effect of an elastically-plastic deformable solid, Dopovidi AN UkrSSR A 8 (1984) 60–63. (in Ukrainian).
Google Scholar