Microstructures and Reaction Properties of Ti/Ni, Ti/Al and Ni/Al Multilayer Films

Article Preview

Abstract:

Reactive multilayer thin films are well-defined heterogeneous nanostructured energetic materials which can release chemical energy through a self-sustainable reaction. They have attracted intense interests due to potential applications in diverse fields such as joining, igniters, and high energy density power sources. In this paper, Ti/Ni, Ti/Al and Ni/Al multilayer films were prepared by magnetron sputtering. The reaction kinetics, microstructure and phase variation of these free-standing films are comparatively investigated. During slow heat reaction, the reaction products of reactive multilayer Ti/Ni nanofoils change from B2-TiNi austenite phase into TiNi3, illustrating an evolution of the phase transformation during reaction. These intermediate phases are also identified by slow heating and quenching. The fast speed imaging exhibits that the front speed is 0.47m/s, 0.8m/s and 3m/s respectively for as-deposited Ti/Ni, Ti/Al, and Ni/Al films. Differential thermal analysis yields that the corresponding releasing heat is 551.44 J/g, 434.18 J/g, and 562.5 J/g for these three composites. The theoretical minimum multilayer thickness for melting a tin solder layer has been calculated on the base of these characterizations, which proved the application potential of joining using the as-deposited film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-34

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Junhui, W. Ruishan, H. Lei, W. Fuliang, L. Zhili, HRTEM and X-ray diffraction analysis of Au wire bonding interface in microelectronics packaging, Solid State Sci. 13 (2011) 72-76.

DOI: 10.1016/j.solidstatesciences.2010.10.011

Google Scholar

[2] J. Braeuer, J. Besser, M. Wiemer, T. Gessner, A novel technique for MEMS packaging: Reactive bonding with integrated material systems, Sensor. Actuat. A-Phy. 188 (2012) 212-219.

DOI: 10.1016/j.sna.2012.01.015

Google Scholar

[3] Y. Ma, H. Li, D. Bridges, P. Peng, B. Lawrie, Z. Feng, A. Hu, Zero-dimensional to three-dimensional nanojoining: current status and potential applications, RSC Adv. 6 (2016) 75916-75936.

DOI: 10.1039/c6ra15897h

Google Scholar

[4] P. T. Hammond, Form and function in multilayer assembly: new applications at the nanoscale, Adv. Mater. 16.15 (2004) 1271-1293.

DOI: 10.1002/adma.200400760

Google Scholar

[5] G. Bohlouli-Zanjani, J.Z. Wen, A. Hu, J. Persic, S. Ringuette, Y.N. Zhou, Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder, Thermochim. Acta. 572 (2013) 51-58.

DOI: 10.1016/j.tca.2013.09.026

Google Scholar

[6] A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y.N. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging, Appl. Phys. Lett. 97 (2010) 153117.

DOI: 10.1063/1.3502604

Google Scholar

[7] C. Suryanarayana, J.J. Moore, R.P. Radtke, Novel methods of brazing dissimilar materials, Adv. Mater. Process. 159 (2001) 29-31.

Google Scholar

[8] C.J. Morris, P. Wilkins, C. May, E. Zakar, T.P. Weihs, Streak spectrograph temperature analysis from electrically exploded Ni/Al nanolaminates, Thin. Solid. Films. 520 (2011) 1645-1650.

DOI: 10.1016/j.tsf.2011.07.043

Google Scholar

[9] J.C. Poret, M. Ding, F. Krieger, J. Swank, G. Chen, C. McMullan, Nanofoil Heating Elements for Thermal Batteries, Proceedings of the Army Science Conference (26th), Florida, 1-4 Dec. (2008).

Google Scholar

[10] X. Qiu, R. Liu, S. Guo, J.H. Graeter, L. Kecskes, J. Wang, Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers, Metall. Mater. Trans. A. 40 (2009) 1541-1546.

DOI: 10.1007/s11661-009-9840-2

Google Scholar

[11] K. Zhang, C. Rossi, M. Petrantoni, N. Mauran, A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater, J. Microelectromech. S. 17 (2008) 832-836.

DOI: 10.1109/jmems.2008.926144

Google Scholar

[12] D.P. Adams, M.A. Rodriguez, C.P. Tigges, P.G. Kotula, Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films, J. Mater. Res. 21 (2006) 3168-3179.

DOI: 10.1557/jmr.2006.0387

Google Scholar

[13] M. Petrantoni, C. Rossi, L. Salvagnac, V. Conédéra, A. Estève, C. Tenailleau, P. Alphonse, Y.J. Chabal, Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J. Appl. Phys. 108 (2010) 084323.

DOI: 10.1063/1.3498821

Google Scholar

[14] Z. A. Munir, Synthesis of high temperature materials by self-propagating combustion methods, Am. Ceram. Soc. Bull. 67.2 (1988) 342-349.

Google Scholar

[15] P. Peng, A. Hu, A. P. Gerlich, Y. Liu, Y. Norman Zhou, Self-generatedlocal heating induced nanojoining for room temperature pressureless flexible electronic packaging. Scientific Rep. 5 (2015) 9282.

DOI: 10.1038/srep09282

Google Scholar

[16] D.P. Adams, Reactive multilayers fabricated by vapor deposition: A critical review, Thin. Solid. Films. 576 (2015) 98-128.

DOI: 10.1016/j.tsf.2014.09.042

Google Scholar

[17] J.A. Floro, Propagation of explosive crystallization in thin Rh–Si multilayer films, J. Vac. Sci. Technol. A. 4 (1986) 631-636.

DOI: 10.1116/1.573848

Google Scholar

[18] S.C. Barron, R. Knepper, N. Walker, T.P. Weihs, Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles, J. Appl. Phys. 109 (2011) 013519.

DOI: 10.1063/1.3527925

Google Scholar

[19] A.S. Rogachev, A.S. Mukasyan, Combustion of heterogeneous nanostructural systems (Review), Combust. Explo. Shock. 46 (2010) 243-266.

DOI: 10.1007/s10573-010-0036-2

Google Scholar

[20] T.P. Weihs, Fabrication and characterization of reactive multilayer films and foils, Metallic films for electronic, optical and magnetic applications. Swaston: Woodhead, DOI (2014) 160-243.

DOI: 10.1533/9780857096296.1.160

Google Scholar

[21] G.M. Fritz, S.J. Spey Jr, M.D. Grapes, T.P. Weihs, Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy, J. Appl. Phys. 113 (2013) 014901.

DOI: 10.1063/1.4770478

Google Scholar

[22] A.S. Rogachev, J-C. Gachon, H. E. Grigoryan, A.N. Nosyrev, P.A. Tsygankov, J.C. Schuster, D. Vrel. Phase evolution during gasless combustion of the micro-and nano-heterogeneous systems: Time resolved study by synchrotron radiation diffraction analysis, Nucl. Instrum. Meth. A. 543 (2005).

DOI: 10.1016/j.nima.2005.01.143

Google Scholar

[23] J. C. Trenkle, L. J. Koerner, M. W. Tate, S. M. Gruner, T. P. Weihs, T. C. Hufnagel, Phase transformations during rapid heating of Al/Ni multilayer foils, Appl. Phys. Lett. 93.8 (2008) 081903.

DOI: 10.1063/1.2975830

Google Scholar

[24] A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, A.S. Mukasyan, Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation, Combust. Flame. 166 (2016).

DOI: 10.1016/j.combustflame.2016.01.014

Google Scholar

[25] A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, A.S. Mukasyan, Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils, Acta. Mater. 66 (2014) 86-96.

DOI: 10.1016/j.actamat.2013.11.045

Google Scholar

[26] R. Longtin, E. Hack, J. Neuenschwander, J. Janczak‐Rusch, Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology, Adv. Mater. 23 (2011) 5812-5816.

DOI: 10.1002/adma.201103275

Google Scholar

[27] Y.N. Picard, J.P. McDonald, T.A. Friedmann, S.M. Yalisove, D.P. Adams, Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates, Appl. Phys. Lett. 93 (2008) 104104.

DOI: 10.1063/1.2981570

Google Scholar

[28] D.P. Adams, M. A. Rodriguez, J. P. McDonald, M. M. Bai, E. Jones Jr, L. Brewer, and J. J. Moore, Reactive Ni/Ti nanolaminates, J. Appl. Phys. 106 (2009) 093505.

DOI: 10.1063/1.3253591

Google Scholar

[29] L. Wang, B. He, and X. H. Jiang. Modeling the Velocity of Self-Propagating Exothermic Reactions in Multilayer Foils, Combust. Sci. Technol. 182.8 (2010) 1000-1008.

DOI: 10.1080/00102200903489311

Google Scholar

[30] E.B. Washington, D. Aurongzeb, D.T. Osborne, J.M. Berg, M. Holtz, H. Temkin, Spatial oscillation in SHS of Ni/Al multilayer foils: measurements and models, ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2005, pp.13-18.

DOI: 10.1115/imece2005-80454

Google Scholar

[31] A.J. Cavaleiro, A.S. Ramos, R.M.S. Martins, C. Baetz, M.T. Vieira, and F.B. Fernandes, In Situ Phase Evolution of Ni/Ti Reactive Multilayers, J. Mater. Eng. Perfor. 23 (2014) 2446-2449.

DOI: 10.1007/s11665-014-1072-y

Google Scholar

[32] R. Armstrong, Theoretical models for the combustion of alloyable materials, Metall. Trans. A. 23 (1992) 2339-2347.

DOI: 10.1007/bf02658035

Google Scholar

[33] J.J. Moore, H. Feng, Combustion synthesis of advanced materials: Part I. Reaction parameters, Prog. Mater. Sci. 39 (1995) 243-273.

Google Scholar

[34] T. Lehnert, S. Tixier, P. Böni, R. Gotthardt, A new fabrication process for Ni–Ti shape memory thin films, Mater. Sci. Eng. A. 273 (1999) 713-716.

DOI: 10.1016/s0921-5093(99)00402-5

Google Scholar

[35] A.J. Cavaleiro, R.J. Santos, A.S. Ramos, M.T. Vieira, In-situ thermal evolution of Ni/Ti multilayer thin films, Intermetallics. 51 (2014) 11-17.

DOI: 10.1016/j.intermet.2014.02.019

Google Scholar

[36] X. Qiu, R. Liu, S. Guo, J.H. Graeter, L. Kecskes, J. Wang, Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers, Metall. Mater. Trans. A. 40 (2009) 1541-1546.

DOI: 10.1007/s11661-009-9840-2

Google Scholar

[37] E. Illeková, J.-C. Gachon, A. Rogachev, H. Grigoryan, J.C. Schuster, A. Nosyrev, P. Tsygankov, Kinetics of intermetallic phase formation in the Ti/Al multilayers, Thermochim. Acta. 469 (2008) 77-85.

DOI: 10.1016/j.tca.2007.12.011

Google Scholar

[38] D. Li, P. Zhu, S. Fu, R. Shen, Y. Ye, T. Hua, Fabrication and Characterization of Al/Ni and Al/Ti Multilayer Nanofilm, Chin. J. Energ. Mater. 6 (2013) 749-753.

Google Scholar

[39] X. Qiu, J. Wang, Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils, Scripta. Mater. 56 (2007) 1055-1058.

DOI: 10.1016/j.scriptamat.2007.02.032

Google Scholar