[1]
L. Junhui, W. Ruishan, H. Lei, W. Fuliang, L. Zhili, HRTEM and X-ray diffraction analysis of Au wire bonding interface in microelectronics packaging, Solid State Sci. 13 (2011) 72-76.
DOI: 10.1016/j.solidstatesciences.2010.10.011
Google Scholar
[2]
J. Braeuer, J. Besser, M. Wiemer, T. Gessner, A novel technique for MEMS packaging: Reactive bonding with integrated material systems, Sensor. Actuat. A-Phy. 188 (2012) 212-219.
DOI: 10.1016/j.sna.2012.01.015
Google Scholar
[3]
Y. Ma, H. Li, D. Bridges, P. Peng, B. Lawrie, Z. Feng, A. Hu, Zero-dimensional to three-dimensional nanojoining: current status and potential applications, RSC Adv. 6 (2016) 75916-75936.
DOI: 10.1039/c6ra15897h
Google Scholar
[4]
P. T. Hammond, Form and function in multilayer assembly: new applications at the nanoscale, Adv. Mater. 16.15 (2004) 1271-1293.
DOI: 10.1002/adma.200400760
Google Scholar
[5]
G. Bohlouli-Zanjani, J.Z. Wen, A. Hu, J. Persic, S. Ringuette, Y.N. Zhou, Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder, Thermochim. Acta. 572 (2013) 51-58.
DOI: 10.1016/j.tca.2013.09.026
Google Scholar
[6]
A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y.N. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging, Appl. Phys. Lett. 97 (2010) 153117.
DOI: 10.1063/1.3502604
Google Scholar
[7]
C. Suryanarayana, J.J. Moore, R.P. Radtke, Novel methods of brazing dissimilar materials, Adv. Mater. Process. 159 (2001) 29-31.
Google Scholar
[8]
C.J. Morris, P. Wilkins, C. May, E. Zakar, T.P. Weihs, Streak spectrograph temperature analysis from electrically exploded Ni/Al nanolaminates, Thin. Solid. Films. 520 (2011) 1645-1650.
DOI: 10.1016/j.tsf.2011.07.043
Google Scholar
[9]
J.C. Poret, M. Ding, F. Krieger, J. Swank, G. Chen, C. McMullan, Nanofoil Heating Elements for Thermal Batteries, Proceedings of the Army Science Conference (26th), Florida, 1-4 Dec. (2008).
Google Scholar
[10]
X. Qiu, R. Liu, S. Guo, J.H. Graeter, L. Kecskes, J. Wang, Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers, Metall. Mater. Trans. A. 40 (2009) 1541-1546.
DOI: 10.1007/s11661-009-9840-2
Google Scholar
[11]
K. Zhang, C. Rossi, M. Petrantoni, N. Mauran, A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater, J. Microelectromech. S. 17 (2008) 832-836.
DOI: 10.1109/jmems.2008.926144
Google Scholar
[12]
D.P. Adams, M.A. Rodriguez, C.P. Tigges, P.G. Kotula, Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films, J. Mater. Res. 21 (2006) 3168-3179.
DOI: 10.1557/jmr.2006.0387
Google Scholar
[13]
M. Petrantoni, C. Rossi, L. Salvagnac, V. Conédéra, A. Estève, C. Tenailleau, P. Alphonse, Y.J. Chabal, Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J. Appl. Phys. 108 (2010) 084323.
DOI: 10.1063/1.3498821
Google Scholar
[14]
Z. A. Munir, Synthesis of high temperature materials by self-propagating combustion methods, Am. Ceram. Soc. Bull. 67.2 (1988) 342-349.
Google Scholar
[15]
P. Peng, A. Hu, A. P. Gerlich, Y. Liu, Y. Norman Zhou, Self-generatedlocal heating induced nanojoining for room temperature pressureless flexible electronic packaging. Scientific Rep. 5 (2015) 9282.
DOI: 10.1038/srep09282
Google Scholar
[16]
D.P. Adams, Reactive multilayers fabricated by vapor deposition: A critical review, Thin. Solid. Films. 576 (2015) 98-128.
DOI: 10.1016/j.tsf.2014.09.042
Google Scholar
[17]
J.A. Floro, Propagation of explosive crystallization in thin Rh–Si multilayer films, J. Vac. Sci. Technol. A. 4 (1986) 631-636.
DOI: 10.1116/1.573848
Google Scholar
[18]
S.C. Barron, R. Knepper, N. Walker, T.P. Weihs, Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles, J. Appl. Phys. 109 (2011) 013519.
DOI: 10.1063/1.3527925
Google Scholar
[19]
A.S. Rogachev, A.S. Mukasyan, Combustion of heterogeneous nanostructural systems (Review), Combust. Explo. Shock. 46 (2010) 243-266.
DOI: 10.1007/s10573-010-0036-2
Google Scholar
[20]
T.P. Weihs, Fabrication and characterization of reactive multilayer films and foils, Metallic films for electronic, optical and magnetic applications. Swaston: Woodhead, DOI (2014) 160-243.
DOI: 10.1533/9780857096296.1.160
Google Scholar
[21]
G.M. Fritz, S.J. Spey Jr, M.D. Grapes, T.P. Weihs, Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy, J. Appl. Phys. 113 (2013) 014901.
DOI: 10.1063/1.4770478
Google Scholar
[22]
A.S. Rogachev, J-C. Gachon, H. E. Grigoryan, A.N. Nosyrev, P.A. Tsygankov, J.C. Schuster, D. Vrel. Phase evolution during gasless combustion of the micro-and nano-heterogeneous systems: Time resolved study by synchrotron radiation diffraction analysis, Nucl. Instrum. Meth. A. 543 (2005).
DOI: 10.1016/j.nima.2005.01.143
Google Scholar
[23]
J. C. Trenkle, L. J. Koerner, M. W. Tate, S. M. Gruner, T. P. Weihs, T. C. Hufnagel, Phase transformations during rapid heating of Al/Ni multilayer foils, Appl. Phys. Lett. 93.8 (2008) 081903.
DOI: 10.1063/1.2975830
Google Scholar
[24]
A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, A.S. Mukasyan, Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation, Combust. Flame. 166 (2016).
DOI: 10.1016/j.combustflame.2016.01.014
Google Scholar
[25]
A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, A.S. Mukasyan, Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils, Acta. Mater. 66 (2014) 86-96.
DOI: 10.1016/j.actamat.2013.11.045
Google Scholar
[26]
R. Longtin, E. Hack, J. Neuenschwander, J. Janczak‐Rusch, Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology, Adv. Mater. 23 (2011) 5812-5816.
DOI: 10.1002/adma.201103275
Google Scholar
[27]
Y.N. Picard, J.P. McDonald, T.A. Friedmann, S.M. Yalisove, D.P. Adams, Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates, Appl. Phys. Lett. 93 (2008) 104104.
DOI: 10.1063/1.2981570
Google Scholar
[28]
D.P. Adams, M. A. Rodriguez, J. P. McDonald, M. M. Bai, E. Jones Jr, L. Brewer, and J. J. Moore, Reactive Ni/Ti nanolaminates, J. Appl. Phys. 106 (2009) 093505.
DOI: 10.1063/1.3253591
Google Scholar
[29]
L. Wang, B. He, and X. H. Jiang. Modeling the Velocity of Self-Propagating Exothermic Reactions in Multilayer Foils, Combust. Sci. Technol. 182.8 (2010) 1000-1008.
DOI: 10.1080/00102200903489311
Google Scholar
[30]
E.B. Washington, D. Aurongzeb, D.T. Osborne, J.M. Berg, M. Holtz, H. Temkin, Spatial oscillation in SHS of Ni/Al multilayer foils: measurements and models, ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2005, pp.13-18.
DOI: 10.1115/imece2005-80454
Google Scholar
[31]
A.J. Cavaleiro, A.S. Ramos, R.M.S. Martins, C. Baetz, M.T. Vieira, and F.B. Fernandes, In Situ Phase Evolution of Ni/Ti Reactive Multilayers, J. Mater. Eng. Perfor. 23 (2014) 2446-2449.
DOI: 10.1007/s11665-014-1072-y
Google Scholar
[32]
R. Armstrong, Theoretical models for the combustion of alloyable materials, Metall. Trans. A. 23 (1992) 2339-2347.
DOI: 10.1007/bf02658035
Google Scholar
[33]
J.J. Moore, H. Feng, Combustion synthesis of advanced materials: Part I. Reaction parameters, Prog. Mater. Sci. 39 (1995) 243-273.
Google Scholar
[34]
T. Lehnert, S. Tixier, P. Böni, R. Gotthardt, A new fabrication process for Ni–Ti shape memory thin films, Mater. Sci. Eng. A. 273 (1999) 713-716.
DOI: 10.1016/s0921-5093(99)00402-5
Google Scholar
[35]
A.J. Cavaleiro, R.J. Santos, A.S. Ramos, M.T. Vieira, In-situ thermal evolution of Ni/Ti multilayer thin films, Intermetallics. 51 (2014) 11-17.
DOI: 10.1016/j.intermet.2014.02.019
Google Scholar
[36]
X. Qiu, R. Liu, S. Guo, J.H. Graeter, L. Kecskes, J. Wang, Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers, Metall. Mater. Trans. A. 40 (2009) 1541-1546.
DOI: 10.1007/s11661-009-9840-2
Google Scholar
[37]
E. Illeková, J.-C. Gachon, A. Rogachev, H. Grigoryan, J.C. Schuster, A. Nosyrev, P. Tsygankov, Kinetics of intermetallic phase formation in the Ti/Al multilayers, Thermochim. Acta. 469 (2008) 77-85.
DOI: 10.1016/j.tca.2007.12.011
Google Scholar
[38]
D. Li, P. Zhu, S. Fu, R. Shen, Y. Ye, T. Hua, Fabrication and Characterization of Al/Ni and Al/Ti Multilayer Nanofilm, Chin. J. Energ. Mater. 6 (2013) 749-753.
Google Scholar
[39]
X. Qiu, J. Wang, Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils, Scripta. Mater. 56 (2007) 1055-1058.
DOI: 10.1016/j.scriptamat.2007.02.032
Google Scholar