Tuning the Electronic Properties of Symetrical and Asymetrical Boron Nitride Passivated Graphene Nanoribbons: Density Function Theory

Article Preview

Abstract:

—Density function theory (DFT) based simulation combined with non-equilibrium green function (NEGF) was used to theoretically investigate electrical properties of symmetrical and asymmetrical boron nitride (BN) passivated graphene nanoribbons. Using density function theory method, it is demonstrated that the band gap of armchair (A) graphene nanoribbon (GNR) can be widened with boron nitride passivation. five symmetrical and five asymmetrical structures were considered, for which we obtained band gaps from 0.45 eV to 2 eV for symmetrical structures and 0.3 eV to 1.5 eV for asymmetrical structures. For the same width of graphene nanoribbon, our results showed that asymmetrical structure has a smaller band gap and almost the same conductance in comparison with the symmetrical one. Finally, comparison between the asymmetrical structure and the hydrogenated armchair graphene (h-AGNR) nanoribbon showed that, hBN-AGNR exhibited a higher conductance compared to an h-AGNR for the same width of GNR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-41

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Akbar F, Kolahdouz M, Larimian S, Radfar B, Radamson HH. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. Electron. [Internet]. Springer US; 2015;1–33.

DOI: 10.1007/s10854-015-2725-9

Google Scholar

[2] Treske U, Ortmann F, Oetzel B, Hannewald K, Bechstedt F. Electronic and transport properties of graphene nanoribbons. Phys. Status Solidi a-Applications Mater. Sci. 2010;207:304–8.

DOI: 10.1002/pssa.200982445

Google Scholar

[3] Castro E V., Novoselov KS, Morozov S V., Peres NMR, Dos Santos JMBL, Nilsson J, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007;99:216802.

DOI: 10.1103/physrevlett.99.216802

Google Scholar

[4] Qin C, Wang G, Kolahdouz M, Luo J, Yin H, Yang P, et al. Impact of pattern dependency of SiGe layers grown selectively in source/drain on the performance of 14 nm node FinFETs. Solid. State. Electron. 2016;124.

DOI: 10.1016/j.sse.2016.07.024

Google Scholar

[5] Wang G, Abedin A, Moeen M, Kolahdouz M, Luo J, Guo Y, et al. Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFET technology. Solid. State. Electron. 2015;103.

DOI: 10.1016/j.sse.2014.07.008

Google Scholar

[6] Wang G, Moeen M, Abedin A, Xu Y, Luo J, Guo Y, et al. Impact of pattern dependency of SiGe layers grown selectively in source/drain on the performance of 22 nm node pMOSFETs. Solid. State. Electron. 2015;114.

DOI: 10.1016/j.sse.2015.07.003

Google Scholar

[7] Guo B, Fang L, Zhang B, Gong JR. Graphene Doping: A Review. Insciences J. | Nanotechnol. Insciences J. 2011;1:80–9.

DOI: 10.5640/insc.010280

Google Scholar

[8] Mohammadi S, Kolahdouz Z, Darbari S, Mohajerzadeh S, Masoumi N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon N. Y. 2013;52:451–63.

DOI: 10.1016/j.carbon.2012.09.056

Google Scholar

[9] Mohammadi S, Kolahdouz Z, Mohajerzadeh S. Hydrogenation-assisted unzipping of carbon nanotubes to realize graphene nano-sheets. J. Mater. Chem. C. The Royal Society of Chemistry; 2013;1:1309–16.

DOI: 10.1039/c2tc00408a

Google Scholar

[10] Hou Z, Yee M. Electronic and transport properties of graphene nanoribbons. 7th IEEE Conf. Nanotechnol. 2007;308:554–7.

Google Scholar

[11] Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, Van Den Brink J, Kelly PJ. Doping graphene with metal contacts. Phys. Rev. Lett. 2008;101.

DOI: 10.1103/physrevlett.101.026803

Google Scholar

[12] Gui G, Li J, Zhong J. Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 2008;78.

DOI: 10.1103/physrevb.78.075435

Google Scholar

[13] Iyakutti, K., Kumar, E. M., Thapa, R., Rajeswarapalanichamy, R., Surya, V. J., & Kawazoe Y. Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. 2016;27:12669–79.

DOI: 10.1007/s10854-016-5401-9

Google Scholar

[14] Huang B, Yan Q, Zhou G, Wu J, Gu BL, Duan W, et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl. Phys. Lett. 2007;91.

DOI: 10.1063/1.2826547

Google Scholar

[15] Kolahdouz M, Maresca L, Ostling M, Riley D, Wise R, Radamson HH. New method to calibrate the pattern dependency of selective epitaxy of SiGe layers. Solid. State. Electron. 2009;53.

DOI: 10.1016/j.sse.2009.04.018

Google Scholar

[16] Radamson HH, Kolahdouz M. Selective epitaxy growth of Si<inf>1−x</inf>Ge<inf>x</inf> layers for MOSFETs and FinFETs. J. Mater. Sci. Mater. Electron. 2015;26.

DOI: 10.1007/s10854-015-3123-z

Google Scholar

[17] Semiconductor Industry Association. International Technology Roadmap for Semiconductors (ITRS) [Internet]. Semicond. Ind. Assoc. 2013. Available from: http://public.itrs.net.

Google Scholar

[18] Yu SS, Zheng WT, Jiang Q. Electronic properties of nitrogen-/boron-doped graphene nanoribbons with armchair edges. IEEE Trans. Nanotechnol. 2010;9:78–81.

DOI: 10.1109/tnano.2009.2020797

Google Scholar

[19] Radamson HH, Kolahdouz M, Shayestehaminzadeh S, Farniya AA, Wissmar S. Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level. Appl. Phys. Lett. 2010;97.

DOI: 10.1063/1.3524211

Google Scholar

[20] Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare U V., et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009;21:4726–30.

DOI: 10.1002/adma.200901285

Google Scholar

[21] Fiori G, Iannaccone G. On the Possibility of Tunable-Gap Bilayer Graphene FET. Electron Device Lett. IEEE. 2009;30:261–4.

DOI: 10.1109/led.2008.2010629

Google Scholar

[22] Khaliji K, Noei M, Tabatabaei SM, Pourfath M, Fathipour M, Abdi Y. Tunable bandgap in bilayer armchair graphene nanoribbons: Concurrent influence of electric field and uniaxial strain. IEEE Trans. Electron Devices. 2013;60:2464–70.

DOI: 10.1109/ted.2013.2266300

Google Scholar

[23] Martinazzo R, Casolo S, Tantardini GF. Symmetry-induced band-gap opening in graphene superlattices. Phys. Rev. B - Condens. Matter Mater. Phys. 2010;81.

DOI: 10.1103/physrevb.81.245420

Google Scholar

[24] Kaloni TP, Joshi RP, Adhikari NP, Schwingenschlögl U. Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl. Phys. Lett. 2014;104.

DOI: 10.1063/1.4866383

Google Scholar

[25] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. Nature Publishing Group; 2010;9:430.

DOI: 10.1038/nmat2711

Google Scholar

[26] Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chemie - Int. Ed. 2013;52:3110–6.

DOI: 10.1002/anie.201209548

Google Scholar

[27] Rabiee Golgir H, Faez R, Pazoki M, Karamitaheri H, Sarvari R. Investigation of quantum conductance in semiconductor single-wall carbon nanotubes: Effect of strain and impurity. J. Appl. Phys. 2011;110.

DOI: 10.1063/1.3641981

Google Scholar

[28] Nematian H, Moradinasab M, Pourfath M, Fathipour M, Kosina H. Optical properties of armchair graphene nanoribbons embedded in hexagonal boron nitride lattices. J. Appl. Phys. 2012;111:6–11.

DOI: 10.1063/1.4710988

Google Scholar

[29] Bashirpour M, Kolahdouz M, Neshat M. Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna. Vacuum [Internet]. Elsevier Ltd; 2017;In Press. Available from: http://dx.doi.org/10.1016/j.vacuum.2017.07.035.

DOI: 10.1016/j.vacuum.2017.07.035

Google Scholar

[30] Bashirpour M, Ghorbani S, Kolahdouz M, Neshat M, Masnadi-Shirazi M, Aghababa H. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. Royal Society of Chemistry; 2017;7:53010–7.

DOI: 10.1039/c7ra11398f

Google Scholar

[31] Kolahdouz Z, Rostamian A, Kolahdouz M, Ma T, van Zeijl H, Zhang K. Output blue light evaluation for phosphor based smart white LED wafer level packages. Opt. Express. 2016;24:174–7.

DOI: 10.1364/oe.24.003216

Google Scholar