[1]
P. S. Ganesh, B. E. Kumara Swamy, Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode, J. Mol. Liq. 220 (2016) 208-215.
DOI: 10.1016/j.molliq.2016.04.078
Google Scholar
[2]
Y. H. Huang, J. H. Chen, X. Sun, Z. B. Su, H. T. Xing, S. R. Hu, W. Weng, H. X. Guo, W. B. Wu, Y. S. He, One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone, Sens. Actuators B 212 (2015).
DOI: 10.1016/j.snb.2015.02.013
Google Scholar
[3]
X. M. Ma, Z. N. Liu, C. C. Qiu, T. Chen, H. Y. Ma, Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite, Microchim. Acta 180 (2013) 461-468.
DOI: 10.1007/s00604-013-0949-z
Google Scholar
[4]
EEC Directive 80/77/CEE 15-7-1990. Off. J. Eur. Communities (30/08/1990), European Community, Brussels, (1990).
Google Scholar
[5]
W. Zhang, J. Zheng, Z. Lin, L. Zhong, J. Shi, C. Wei, H. Zhang, A. Hao, S. Hu, Highly sensitive simultaneous electrochemical determination of hydroquinone, catechol and resorcinol based on carbon dot/reduced graphene oxide composite modified electrodes, Anal. Methods 7 (2015).
DOI: 10.1039/c5ay00848d
Google Scholar
[6]
G. Marrubini, Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection, Chromatographia 62 (2005) 25-31.
DOI: 10.1365/s10337-005-0570-3
Google Scholar
[7]
P. Nagaraja, R. A. Vasantha, K. R. Sunitha, A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations, Talanta 55 (2001) 1039-1046.
DOI: 10.1016/s0039-9140(01)00438-6
Google Scholar
[8]
S. C. Moldoveanu, M. Kiser, Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke, J. Chromatogr. A 1141 (2007) 90-97.
DOI: 10.1016/j.chroma.2006.11.100
Google Scholar
[9]
H. Cui, C. He, G. Zhao, Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection, J. Chromatogr. A 855 (1999) 171-179.
DOI: 10.1016/s0021-9673(99)00670-6
Google Scholar
[10]
M. F. Pistonesi, M. S. DiNezio, M. E. Centurión, M. E. Palomeque, A. G. Lista, B. S. Fernández Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69 (2006).
DOI: 10.1016/j.talanta.2005.12.050
Google Scholar
[11]
D. M. Song, J. F. Xia, F. F. Zhang, S. Bi, W. J. Xiang, Z. H. Wang, L. Xia, Y. Z. Xia, Y. H. Li, L. H. Xia, Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone, Sens. Actuators B. 206 (2015).
DOI: 10.1016/j.snb.2014.08.084
Google Scholar
[12]
K. Ghanbari, N. Hajheidari, ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid, Anal. Biochem. 473 (2015) 53-62.
DOI: 10.1016/j.ab.2014.12.013
Google Scholar
[13]
J. Du, R. R. Yue, F. F. Ren, Z. Q. Yao, F. X. Jiang, P. Yang, Y. K. Du, Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 53 (2014) 220-224.
DOI: 10.1016/j.bios.2013.09.064
Google Scholar
[14]
Y. Wang, J. Qu, S. Li, Y. Dong, J. Qu, Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine, Microchim. Acta 182 (2015) 2277-2283.
DOI: 10.1007/s00604-015-1568-7
Google Scholar
[15]
S. Hu, W. Zhang, J. Zheng, J. Shi, Z. Lin, L. Zhong, G. Cai, C. Wei, H. Zhang, A. Hao, One step synthesis cadmium sulphide/reduced graphene oxide sandwiched film modified electrode for simultaneous electrochemical determination of hydroquinone, catechol and resorcinol, RSC Adv. 5 (2015).
DOI: 10.1039/c4ra16268d
Google Scholar
[16]
P. S. Ganesh, B. E. Kumara Swamy, J. Electroanal, Simultaneous electroanalysis of hydroquinone and catechol at poly(brilliant blue) modified carbon paste electrode: a voltammetric study, J. Electroanal. Chem. 756 (2015) 193-200.
DOI: 10.1016/j.jelechem.2015.08.027
Google Scholar
[17]
J. Peng, Y. Feng, X. Han, Z. Gao, Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode, Microchim. Acta 183 (2016) 2289-2296.
DOI: 10.1007/s00604-016-1865-9
Google Scholar
[18]
J. Tashkhouriana, M. Daneshia, F. Nami-Anaa, M. Behbahanib, A. Bagheriba, J. Hazard, Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode, J. Hazard. Mater. 318 (2016).
DOI: 10.1016/j.jhazmat.2016.06.049
Google Scholar
[19]
A. Bathinapatla, S. Kanchi, P. Singh, M. I. Sabela, K. Bisetty, Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame, Biosens. Bioelectron. 67 (2015).
DOI: 10.1016/j.bios.2014.08.017
Google Scholar
[20]
Y. Wang, Y. Xiong, J. Qu, J. Qu, S. Li, Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites, Sens. Actuators B 223 (2016) 501-508.
DOI: 10.1016/j.snb.2015.09.117
Google Scholar
[21]
L. A. Goulart1, L. H. Mascaro1, GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol, Electrochim. Acta 196 (2016) 48-55.
DOI: 10.1016/j.electacta.2016.02.174
Google Scholar
[22]
Z. Meng, H. Zhang, J. Zheng, An improved synthesis of sunitinib malate via a solvent-free decarboxylation process, Res. Chem. Intermed. 41 (2015) 3135-3146.
DOI: 10.1007/s11164-015-1939-z
Google Scholar
[23]
C. Wei, Q. Huang, S. Hua, H. Zhang, W. Zhang, Z. Wang, M. Zhu, P. Dai, L. Huang, Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode, Electrochim. Acta 149 (2014).
DOI: 10.1016/j.electacta.2014.10.051
Google Scholar
[24]
H. Liu, Z. He, L. Jiang, J. Zhu, Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications, ACS Appl. Mater. Interfaces 7 (2015) 4913-4920.
DOI: 10.1021/am508994w
Google Scholar
[25]
Y. Li, Y. Zhong, Y. Zhang, W. Weng, S. Li, Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor, Sens. Actuators B 206 (2015) 735-743.
DOI: 10.1016/j.snb.2014.09.016
Google Scholar
[26]
X. Ren, J. Liu, J. Ren, F. Tang, X. Meng, One-pot synthesis of active copper-containing carbon dots with laccase-like activities, Nanoscale 7 (2015) 19641-19646.
DOI: 10.1039/c5nr04685h
Google Scholar
[27]
B. Liu, L. Luo, Y. Ding, X. Si, Y. Wei, X. Ouyang, D. Xu, Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode, Electrochim. Acta 142 (2014).
DOI: 10.1016/j.electacta.2014.07.126
Google Scholar
[28]
H. Liu, Y. Lou, F. Zhou, H. Zhu, E. S. Abdel-Halim, J. J. Zhu, An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity, Biosens. Bioelectron. 71 (2015) 249-255.
DOI: 10.1016/j.bios.2015.04.048
Google Scholar
[29]
J. Zhou, X. Li, L. Yang, S. Yan, M. Wang, D. Cheng, Q. Chen, Y. Dong, P. Liu, W. Cai, C. Zhang, The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits, Anal. Chim. Acta 899 (2015).
DOI: 10.1016/j.aca.2015.09.054
Google Scholar
[30]
P. Shi, X. Miao, H. Yao, S. Lin, B. Wei, J. Chen, X. Lin, Y. Tang, Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines, Electrochim. Acta 92 (2013).
DOI: 10.1016/j.electacta.2014.03.003
Google Scholar
[31]
Y. Song, T. Yang, X. Zhou, H. Zheng, S. Suye, Microsensor for hydroquinone and catechol based on poly (3, 4-ethylenedioxythiophene) modified carbon fiber electrode, Anal. Methods 8 (2016) 886-892.
DOI: 10.1039/c5ay02532j
Google Scholar
[32]
S. Erogul, S. Bas, M. Ozmen, S. Yildiz, A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone, Electrochim. Acta 186 (2015) 302-313.
DOI: 10.1016/j.electacta.2015.10.174
Google Scholar
[33]
Y. Yao, Y. Liu, Z. Yang, A novel electrochemical sensor based on a glassy carbon electrode modified with Cu–MWCNT nanocomposites for determination of hydroquinone, Anal. Methods 8 (2016) 2568-2575.
DOI: 10.1039/c5ay03271g
Google Scholar
[34]
X. Wang, M. Xi, M. Guo, F. Sheng, G. Xiao, S. Wu, S. Uchiyama, H. Matsuura, An electrochemically aminated glassy carbon elec trode for simultaneous determination of hydroquinone and catechol, Analyst 141 (2016) 1077-1082.
DOI: 10.1039/c5an02098k
Google Scholar
[35]
Y. Zhang, R. Sun, B. Luo, L. Wang, Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol, Electrochim. Acta 156 (2015) 228-234.
DOI: 10.1016/j.electacta.2014.12.156
Google Scholar