Simultaneous Determination of Hydroquinone, and Catechol Using a Multi-Walled Carbon Nanotube/GC Electrode Modified by Electrodeposition of Carbon Nanodots

Article Preview

Abstract:

Herein, in order to detect hydroquinone (HQ) and catechol (CC) simultaneously, an electrochemical sensor with good selectivity and sensitivity was developed. It is constructed by electrodeposition of carbon nanodots (CDs) on the surface of multi-walled carbon nanotubes (MWNTs) doped glassy carbon electrode. First, the experimental parameter was optimized. The electrochemical behavior was then evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. The linear range for HQ and CC was 0.1-200 μM, and the detection limit was 0.03 μM. Incorporated the large surface area and fast charge transfer of MWNTs and CDs with electrodeposition technology's stability, high excellent selectivity, sensitivity, stability and good reproducibility was exhibited by the fabricated sensor. Furthermore, the electrode was successfully used to determine the concentration of HQ and CC in tap water, and thus exhibited potential applications environment monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-53

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. S. Ganesh, B. E. Kumara Swamy, Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode, J. Mol. Liq. 220 (2016) 208-215.

DOI: 10.1016/j.molliq.2016.04.078

Google Scholar

[2] Y. H. Huang, J. H. Chen, X. Sun, Z. B. Su, H. T. Xing, S. R. Hu, W. Weng, H. X. Guo, W. B. Wu, Y. S. He, One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone, Sens. Actuators B 212 (2015).

DOI: 10.1016/j.snb.2015.02.013

Google Scholar

[3] X. M. Ma, Z. N. Liu, C. C. Qiu, T. Chen, H. Y. Ma, Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite, Microchim. Acta 180 (2013) 461-468.

DOI: 10.1007/s00604-013-0949-z

Google Scholar

[4] EEC Directive 80/77/CEE 15-7-1990. Off. J. Eur. Communities (30/08/1990), European Community, Brussels, (1990).

Google Scholar

[5] W. Zhang, J. Zheng, Z. Lin, L. Zhong, J. Shi, C. Wei, H. Zhang, A. Hao, S. Hu, Highly sensitive simultaneous electrochemical determination of hydroquinone, catechol and resorcinol based on carbon dot/reduced graphene oxide composite modified electrodes, Anal. Methods 7 (2015).

DOI: 10.1039/c5ay00848d

Google Scholar

[6] G. Marrubini, Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection, Chromatographia 62 (2005) 25-31.

DOI: 10.1365/s10337-005-0570-3

Google Scholar

[7] P. Nagaraja, R. A. Vasantha, K. R. Sunitha, A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations, Talanta 55 (2001) 1039-1046.

DOI: 10.1016/s0039-9140(01)00438-6

Google Scholar

[8] S. C. Moldoveanu, M. Kiser, Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke, J. Chromatogr. A 1141 (2007) 90-97.

DOI: 10.1016/j.chroma.2006.11.100

Google Scholar

[9] H. Cui, C. He, G. Zhao, Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection, J. Chromatogr. A 855 (1999) 171-179.

DOI: 10.1016/s0021-9673(99)00670-6

Google Scholar

[10] M. F. Pistonesi, M. S. DiNezio, M. E. Centurión, M. E. Palomeque, A. G. Lista, B. S. Fernández Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69 (2006).

DOI: 10.1016/j.talanta.2005.12.050

Google Scholar

[11] D. M. Song, J. F. Xia, F. F. Zhang, S. Bi, W. J. Xiang, Z. H. Wang, L. Xia, Y. Z. Xia, Y. H. Li, L. H. Xia, Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone, Sens. Actuators B. 206 (2015).

DOI: 10.1016/j.snb.2014.08.084

Google Scholar

[12] K. Ghanbari, N. Hajheidari, ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid, Anal. Biochem. 473 (2015) 53-62.

DOI: 10.1016/j.ab.2014.12.013

Google Scholar

[13] J. Du, R. R. Yue, F. F. Ren, Z. Q. Yao, F. X. Jiang, P. Yang, Y. K. Du, Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 53 (2014) 220-224.

DOI: 10.1016/j.bios.2013.09.064

Google Scholar

[14] Y. Wang, J. Qu, S. Li, Y. Dong, J. Qu, Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine, Microchim. Acta 182 (2015) 2277-2283.

DOI: 10.1007/s00604-015-1568-7

Google Scholar

[15] S. Hu, W. Zhang, J. Zheng, J. Shi, Z. Lin, L. Zhong, G. Cai, C. Wei, H. Zhang, A. Hao, One step synthesis cadmium sulphide/reduced graphene oxide sandwiched film modified electrode for simultaneous electrochemical determination of hydroquinone, catechol and resorcinol, RSC Adv. 5 (2015).

DOI: 10.1039/c4ra16268d

Google Scholar

[16] P. S. Ganesh, B. E. Kumara Swamy, J. Electroanal, Simultaneous electroanalysis of hydroquinone and catechol at poly(brilliant blue) modified carbon paste electrode: a voltammetric study, J. Electroanal. Chem. 756 (2015) 193-200.

DOI: 10.1016/j.jelechem.2015.08.027

Google Scholar

[17] J. Peng, Y. Feng, X. Han, Z. Gao, Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode, Microchim. Acta 183 (2016) 2289-2296.

DOI: 10.1007/s00604-016-1865-9

Google Scholar

[18] J. Tashkhouriana, M. Daneshia, F. Nami-Anaa, M. Behbahanib, A. Bagheriba, J. Hazard, Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode, J. Hazard. Mater. 318 (2016).

DOI: 10.1016/j.jhazmat.2016.06.049

Google Scholar

[19] A. Bathinapatla, S. Kanchi, P. Singh, M. I. Sabela, K. Bisetty, Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame, Biosens. Bioelectron. 67 (2015).

DOI: 10.1016/j.bios.2014.08.017

Google Scholar

[20] Y. Wang, Y. Xiong, J. Qu, J. Qu, S. Li, Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites, Sens. Actuators B 223 (2016) 501-508.

DOI: 10.1016/j.snb.2015.09.117

Google Scholar

[21] L. A. Goulart1, L. H. Mascaro1, GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol, Electrochim. Acta 196 (2016) 48-55.

DOI: 10.1016/j.electacta.2016.02.174

Google Scholar

[22] Z. Meng, H. Zhang, J. Zheng, An improved synthesis of sunitinib malate via a solvent-free decarboxylation process, Res. Chem. Intermed. 41 (2015) 3135-3146.

DOI: 10.1007/s11164-015-1939-z

Google Scholar

[23] C. Wei, Q. Huang, S. Hua, H. Zhang, W. Zhang, Z. Wang, M. Zhu, P. Dai, L. Huang, Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode, Electrochim. Acta 149 (2014).

DOI: 10.1016/j.electacta.2014.10.051

Google Scholar

[24] H. Liu, Z. He, L. Jiang, J. Zhu, Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications, ACS Appl. Mater. Interfaces 7 (2015) 4913-4920.

DOI: 10.1021/am508994w

Google Scholar

[25] Y. Li, Y. Zhong, Y. Zhang, W. Weng, S. Li, Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor, Sens. Actuators B 206 (2015) 735-743.

DOI: 10.1016/j.snb.2014.09.016

Google Scholar

[26] X. Ren, J. Liu, J. Ren, F. Tang, X. Meng, One-pot synthesis of active copper-containing carbon dots with laccase-like activities, Nanoscale 7 (2015) 19641-19646.

DOI: 10.1039/c5nr04685h

Google Scholar

[27] B. Liu, L. Luo, Y. Ding, X. Si, Y. Wei, X. Ouyang, D. Xu, Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode, Electrochim. Acta 142 (2014).

DOI: 10.1016/j.electacta.2014.07.126

Google Scholar

[28] H. Liu, Y. Lou, F. Zhou, H. Zhu, E. S. Abdel-Halim, J. J. Zhu, An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity, Biosens. Bioelectron. 71 (2015) 249-255.

DOI: 10.1016/j.bios.2015.04.048

Google Scholar

[29] J. Zhou, X. Li, L. Yang, S. Yan, M. Wang, D. Cheng, Q. Chen, Y. Dong, P. Liu, W. Cai, C. Zhang, The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits, Anal. Chim. Acta 899 (2015).

DOI: 10.1016/j.aca.2015.09.054

Google Scholar

[30] P. Shi, X. Miao, H. Yao, S. Lin, B. Wei, J. Chen, X. Lin, Y. Tang, Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines, Electrochim. Acta 92 (2013).

DOI: 10.1016/j.electacta.2014.03.003

Google Scholar

[31] Y. Song, T. Yang, X. Zhou, H. Zheng, S. Suye, Microsensor for hydroquinone and catechol based on poly (3, 4-ethylenedioxythiophene) modified carbon fiber electrode, Anal. Methods 8 (2016) 886-892.

DOI: 10.1039/c5ay02532j

Google Scholar

[32] S. Erogul, S. Bas, M. Ozmen, S. Yildiz, A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone, Electrochim. Acta 186 (2015) 302-313.

DOI: 10.1016/j.electacta.2015.10.174

Google Scholar

[33] Y. Yao, Y. Liu, Z. Yang, A novel electrochemical sensor based on a glassy carbon electrode modified with Cu–MWCNT nanocomposites for determination of hydroquinone, Anal. Methods 8 (2016) 2568-2575.

DOI: 10.1039/c5ay03271g

Google Scholar

[34] X. Wang, M. Xi, M. Guo, F. Sheng, G. Xiao, S. Wu, S. Uchiyama, H. Matsuura, An electrochemically aminated glassy carbon elec trode for simultaneous determination of hydroquinone and catechol, Analyst 141 (2016) 1077-1082.

DOI: 10.1039/c5an02098k

Google Scholar

[35] Y. Zhang, R. Sun, B. Luo, L. Wang, Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol, Electrochim. Acta 156 (2015) 228-234.

DOI: 10.1016/j.electacta.2014.12.156

Google Scholar