Surface β-Cyclodextrin Polymer Coated Fe3O4 Magnetic Nanoparticles: Synthesis, Characterization and Application on Efficient Adsorption of Malachite Green

Article Preview

Abstract:

Surface β-cyclodextrin polymer coated Fe3O4 magnetic nanoparticles (NPs) were prepared by anchoring pyromellitic dianhydride derivate-b-cyclodextrin polymer (b-CD-P) onto the surface of Fe3O4 magnetic NPs, which is generated in situ through a co-precipitation method. The transmission electron microscopy (TEM) result indicates that Fe3O4@β-CD-P NPs have an effective average size of 15 ± 2 nm. The surface coated layer β-CD-P was confirmed by Fourier-Transformed Infrared Spectroscopy, and the amount of which was determined to be 138.2 mg g-1 by thermogravimetric analysis. To explore the potential application of such nanocomposites for organic pollutants adsorption, malachite green (MG), a typical cancer-causing water pollutant was evaluated by spectrophotometric method. It was finally learnt that, the adsorption rate of MG by Fe3O4@β-CD-P NPs follows pseudo-second-order kinetics with adsorption isotherm fitted by the Langmuir isotherm model well. The maximum adsorption capacity was measured to be 88.49 mg g-1 at 25 °C. Additionally, a good recyclability of the Fe3O4@β-CD-P was observed over four usage cycles, with slight decrease of adsorption capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-65

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.H. Jia, I. Ahmad, R. Yang, C. Wang. Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. J. Mater. Chem. B, 5 (2017) 2459-2467.

DOI: 10.1039/c6tb03084j

Google Scholar

[2] C.W. Wang, S.P. Xu, K.H. Zhang, M. Li, Q.J. Li, R. Xiao, S.Q. Wang, Streptomycin-modified Fe3O4-Au@Ag core-satellite magnetic nanoparticles as an effective antibacterial agent. J. Mater. Sci, 52 (2017) 1357-1368.

DOI: 10.1007/s10853-016-0430-6

Google Scholar

[3] J. Gao, Z.K. Guo, S.Q. Yu, F.J. Su, H.M. Ma, B. Du, Q. Wei, X.H. Pang, A novel controlled release system-based homogeneous immunoassay protocol for SCCA using magnetic mesoporous Fe3O4 as a nanocontainer and aminated polystyrene microspheres as a molecular gate. Biosens. Bioelectron, 66 (2015).

DOI: 10.1016/j.bios.2014.10.078

Google Scholar

[4] T. Gong, Z.X. Gao, W.L. Bian, F.F. Tai, W.Q. Liang, W.T. Liang, Q.C. Dong, C. Dong, Co-containing and Pt-containing polymer blend to ferromagnetic CoPt NPs: Synthesis, characterization and patterning study by nanoimprint lithography. J Organomet. Chem., 819 (2016).

DOI: 10.1016/j.jorganchem.2016.07.015

Google Scholar

[5] C.I. Fernandes, M.D. Carvalho, L.P. Ferreira, C.D. Nunes, P.D. Vaz, Organometallic Mo complex anchored to magnetic iron oxide nanoparticles as highly recyclable epoxidation catalyst. J. Organomet. Chem., 760 (2014) 2-10.

DOI: 10.1016/j.jorganchem.2014.01.035

Google Scholar

[6] M.Y. Gou, S.N. Li, L.Y. Zhang, L. Li, C.G. Wang, Z.M. Su, Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chem. Commun., 52 (2016) 11068-11071.

DOI: 10.1039/c6cc05515j

Google Scholar

[7] K. Hayash, Y. Sato, W. Sakamoto, T. Yogo, Theranostic Nanoparticles for MRI-Guided Thermochemotherapy: Tight, Clustering of Magnetic Nanoparticles Boosts Relaxivity and Heat-Generation Power. ACS Biomater. Sci. Eng., 3 (2017) 95-105.

DOI: 10.1021/acsbiomaterials.6b00536

Google Scholar

[8] J.J. Zhang, S.H. Chen, X.R. Tan, X. Zhong, D.H. Yuan, Y.F. Cheng, Highly sensitive electrochemiluminescence biosensors for cholesterol detection based on mesoporous magnetic core-shell microspheres. Biotechnol. Lett., 36 (2014) 1835-1841.

DOI: 10.1007/s10529-014-1547-9

Google Scholar

[9] H. Song, D.G. Park, Application of the magnetoimpedance to biosensors. J. Korean. Chem. Soc., 61 (2012) 1636-1640.

Google Scholar

[10] J. Zhang, J.L. Gong, G.M. Zenga, X.M. Ou, Y. Jiang, Y.N. Chang, M. Guo, C. Zhang, H.Y. Liu, Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Appl. Surf. Sci., 370 (2016) 335-350.

DOI: 10.1016/j.apsusc.2016.02.181

Google Scholar

[11] T.K. Mahto, A.R. Chowdhuri, S.K. Sahu, Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater. J. Appl. Polym. Sci., 131 (2014) 5829-5836.

DOI: 10.1002/app.40840

Google Scholar

[12] A.A. Nafiey, A.A. Addad, B. Sieber, G. Chastanet, A. Barras, S. Szunerits, R. Boukherroub, Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol and Cr(VI) and dye removal from aqueous solutions. Chem. Eng. J., 322 (2017).

DOI: 10.1016/j.cej.2017.04.039

Google Scholar

[13] H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale, 3 (2011) 3583-3585.

DOI: 10.1039/c1nr10549c

Google Scholar

[14] R. Chalasani, S. Vasudevan, Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J. Mater. Chem., 22 (2012) 14925-14931.

DOI: 10.1039/c2jm32360e

Google Scholar

[15] F. Cao, W. Hu, L. Zhou, W.D. Shi, S.Y. Song, Y.Q. Lei, S. Wang, H.J. Zhang, 3D Fe3S4 flower-like microspheres: high-yield synthesis via a biomolecule-assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties. Dalton. Trans., 42 (2009).

DOI: 10.1039/b912569h

Google Scholar

[16] Y.H. Zhou, L.L. Sun, H.X. Wang, W.T. Liang, J. Yang, L. Wang, S.M. Shuang, Investigation on the uptake and release ability of b-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue. Mater. Chem. Phys., 170 (2016) 83-89.

DOI: 10.1016/j.matchemphys.2015.12.022

Google Scholar

[17] M. Esmaeilpour, A.R. Sardarian, J. Javidi, Synthesis and characterization of Schiff base complex of Pd(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles and its application as an efficient copper- and phosphine ligand-free recyclable catalyst for Sonogashira–Hagihara coupling reactions. J. Organomet. Chem., 749 (2014).

DOI: 10.1016/j.jorganchem.2013.10.011

Google Scholar

[18] S.H. Huang, R.S. Juang, Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J. Nanopart. Res., 13 (2011) 4411-4430.

DOI: 10.1007/s11051-011-0551-4

Google Scholar

[19] H.B. He, B. Li, J.P. Dong, Y.Y. Lei, T.L. Wang, Q.W. Yu, Y.Q. Feng, Y.B. Sun, Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater. ACS Appl. Mater. Inter., 5 (2013).

DOI: 10.1021/am402137c

Google Scholar

[20] N.M. Mahmoodi, B. Hayati, M. Arami, H. Bahrami, Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 275 (2011) 93-101.

DOI: 10.1016/j.desal.2011.02.034

Google Scholar

[21] G. Absalan, M. Asadi, S. Kamran, L. Sheikhian, D.M. Goltz, Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. J. Hazard. Mater., 192 (2011) 476-484.

DOI: 10.1016/j.jhazmat.2011.05.046

Google Scholar

[22] Y.Y. Xu, M. Zhou, H.J. Geng, J.J. Hao, Q.Q. Ou, S.D. Qi, H.L. Chen, X.G. Chen, A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Appl. Surf. Sci., 258 (2012) 3897-3902.

DOI: 10.1016/j.apsusc.2011.12.054

Google Scholar

[23] S. Vahedi , O. Tavakoli, M. Khoobi , A. Ansari , M.A. Faramarzi, Application of novel magnetic b-cyclodextrin-anhydride polymer nano-adsorbent in cationic dye removal from aqueous solution. J. Taiwan Inst. Chem. E., 80 (2017) 452 - 463.

DOI: 10.1016/j.jtice.2017.07.039

Google Scholar

[24] H.H. Liu, X.Y. Cai, Y. Wang, J.W. Chen, Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water. Res., 45 (2011) 3499-3511.

DOI: 10.1016/j.watres.2011.04.004

Google Scholar

[25] N. Morin-Crini, G. Crini, Environmental applications of water-insoluble b-cyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci., 38 (2013) 344-368.

DOI: 10.1016/j.progpolymsci.2012.06.005

Google Scholar

[26] T. Gong, Y.H. Zhou, L.L. Sun, W.T. Liang, J. Yang, S.M. Shuang, C. Dong, Effective adsorption of phenolic pollutants from water using b-cyclodextrin polymer functionalized Fe3O4 magnetic nanoparticles. RSC. Adv., 6 (2016) 80955-80963.

DOI: 10.1039/c6ra16383a

Google Scholar

[27] A.Z. Badruddoza, Z.B. Shawon, W.J. Tay, K. Hidajat, M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym., 91 (2013) 322-332.

DOI: 10.1016/j.carbpol.2012.08.030

Google Scholar

[28] A.R. Kiasat, S. Nazari, b-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: synthesis and applications in nucleophilic substitution reaction of benzyl halides. J. Incl. Phenom. Macrol., 76 (2013).

DOI: 10.1007/s10847-012-0207-8

Google Scholar

[29] W.T. Liang, C. Yang, D.Y. Zhou, H. Haneoka, M. Nishijima, G. Fukuhara, T. Mori, F. Castiglione, A. Mele, F. Caldera, F. Trotta, Y. Inoue, Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem. Commu. 49 (2013).

DOI: 10.1039/c3cc40542g

Google Scholar

[30] L. Zhou, C. Gao, W.J. Xu, Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl. Mater. Inter., 2 (2010) 1483-1491.

DOI: 10.1021/am100114f

Google Scholar

[31] R.J. Goldacre and J.N. Phillips. The ionization of basic triphenylmethane dyes [J]. J. Chem. Soc, (1949) 1724-1732.

DOI: 10.1039/jr9490001724

Google Scholar

[32] M. Sharma, G. Madras, S. Bose. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism. Mater. Res. Express, 3 (2016), 075303.

DOI: 10.1088/2053-1591/3/7/075303

Google Scholar

[33] A. Mohammadi, H. Daemi, M. Barikani. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int. J. Biol. Macromol., 69 (2014) 447-455.

DOI: 10.1016/j.ijbiomac.2014.05.042

Google Scholar

[34] A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi and E.A. Dil.Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrasonics Sonochemistry, 34, (2017).

DOI: 10.1016/j.ultsonch.2016.05.011

Google Scholar

[35] I. Safarik, K. Horska, B. Svobodova, et al. Magnetically modified spent coffee grounds for dyes removal. European Food Research & Technology, 234, (2012), 345-350.

DOI: 10.1007/s00217-011-1641-3

Google Scholar

[36] I. Savva, O. Marinica, C. Papatryfonos, et al. Evaluation of electrospun polymer-Fe3O4 nanocomposite mats in malachite green adsorption. Rsc Advances, 5, (2015), 16484-16496.

DOI: 10.1039/c4ra16938g

Google Scholar

[37] L.Y. Zhang, S.L. Wu, Y.F. Tai, et al. Water-soluble magnetic-graphene nanocomposites: Use as high-performance adsorbent for removal of dye pollutants. Fullerene, Nanotubes and Carbon Nanostructures, 24(2), (2016) 116-122.

DOI: 10.1080/1536383x.2015.1124093

Google Scholar