[1]
M. J. Patently; Nano materials-the driving force, Nanotoday, 7(12) 20 (2004).
Google Scholar
[2]
J. Kim; Nanodevices by using Semiconductor Nanowires. University of Texas at Austin, Austin (2004).
Google Scholar
[3]
Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F & Markakis V: Manufacturing nanomaterials: from research to industry. Manufacturing Rev. 2014,1, 11.
DOI: 10.1051/mfreview/2014009
Google Scholar
[4]
Alejandro Soliva Beser; Nanotechnology Fabrication Methods; ET 1039 – Nanotechnology;http://www.fisica.uji.es/priv/web_ET1039/2016.pdf (acess on Feb.15.2020).
Google Scholar
[5]
James R., Heath Francoise K., LeGoues; A liquid solution synthesis of single crystal germanium quantum wires; Chemical Physics Letters; Volume 208, Issues 3–4, 11 June 1993, pp.263-268.
DOI: 10.1016/0009-2614(93)89073-q
Google Scholar
[6]
R. S. Wagner and W. C. Ellis; Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett 4(5):89–90 (1964).
DOI: 10.1063/1.1753975
Google Scholar
[7]
Schwalbach EJ, Voorhees PW; Phase equilibrium and nucleation in VLS-grown nanowires; Nano Lett. 2008 Nov;8(11):3739-45.
DOI: 10.1021/nl801987j
Google Scholar
[8]
Lu, H., Meng, X.; Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth. Sci Rep 5, 11263 (2015). https://doi.org/10.1038/srep11263.
DOI: 10.1038/srep11263
Google Scholar
[9]
Dunwei Wang; Synthesis and properties of germanium nanowires; Pure Appl. Chem., Vol. 79, No. 1, p.55–65, 2007.
Google Scholar
[10]
S. Noor Mohammad For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid mechanism, J. Chem. Phys.131(22) (2009).
DOI: 10.1063/1.3246169
Google Scholar
[11]
Chuanbo Li, Hiroshi Mizuta and Shunri Oda (July 18th 2011). Growth and characterisation of Ge Nanowires by chemical vapour deposition, Nanowires - Implementations and Applications, Abbass Hashim, Intech Open,.
DOI: 10.5772/18991
Google Scholar
[12]
Arnoldas UŽUPIS, Jacek TYCZKOWSKI, Kondrad GUBIEC, Sigitas TAMULEVIČIUS, Mindaugas ANDRULEVIČIUS, Mindaugas PUCĖTA; Properties of GeXOY:H Thin Films Produced by Plasma-Assisted Chemical Vapor Deposition; ISSN 1392–1320; MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 15, No. 1. (2009).
Google Scholar
[13]
Y. F. Zhang et al. Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett 72(15):1835–1837 (1998).
DOI: 10.1063/1.121199
Google Scholar
[14]
Z. Zhu et al. The Vapor-Solid-Solid Growth of Ge Nanowires on Ge (110) by Molecular Beam Epitaxy, Axiv 122 094304, (2017).
Google Scholar
[15]
Y. Wu and P. Yang; Germanium nanowire growth via simple vapor transport, Chem. Mater.12 3: 605–607 (2000).
DOI: 10.1021/cm9907514
Google Scholar
[16]
Khac An Dao, Tien Dai Nguyen, Anh Tuan Phan & Hung Manh Do; On the formation of voids, etched holes, and GaO particles configuration during the nanowires growth by VLS method on GaAs substrate, Journal of Materials Science: Materials in Electronics, J Mater Sci: Mater Electron 24: (2013) 2513-2520.
DOI: 10.1007/s10854-013-1126-1
Google Scholar
[17]
Dao Khac An, Dao D. Khang, Phan A. Tuan, Nguyen T. Dai and Do Hung Manh; The effects of Au surface diffusion to formation of Au droplets/cluster and nanowire growth on GaAs substrate using VLS method, Journal of Materials Science: Materials in electronics; J.Mater Sci:Mater Electron, 23(11) pp.2065-2074 (2012).
DOI: 10.1007/s10854-012-0704-y
Google Scholar
[18]
Dao Khac An, Nguyen Xuan Chung, Pham Hong Trang, Hoang Van Vuong, Phan Viet Phong and Phan Anh Tuan; On growth mechanisms and dynamic simulation of growth process based on the experimental results of nanowire growth by VLS method on semiconductor substrates; IOP Publishing, Journal of Physics: Conference Series Vol.187, 012052 (2009).
DOI: 10.1088/1742-6596/187/1/012052
Google Scholar
[19]
Khac An Dao, Anh Tuan Phan, Hung Manh Do,Tien Hung Luu, Meiken Falke, M. MacKenzie; The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate; J. Mater. Sci.: Mater. Electron, Vol. 22, Number 2, pp.204-216 (2011).
DOI: 10.1007/s10854-010-0115-x
Google Scholar
[20]
DAO, K.A.; Pham, H.T.; Nguyen, T.T.; Phan, A.T. The Formation Mechanism and Model of the Surface Nanoscale Kirkendall Effect on Au Catalyst Island/GaAs Substrate by Thermal Vapor-Liquid-Solid Method with Two-Step Temperature Mode. Catalysts, 9, 1072 (2019).
DOI: 10.3390/catal9121072
Google Scholar
[21]
V.G. Weizer, N.S. Fatemi; The interaction of gold with gallium arsenide. J. Appl. Phys. 64, 4618 (1988).
Google Scholar
[22]
Z. Liliental-Weber, J. Washburn, N. Newman, W.E. Spicer, E.R. Weber; Morphology of Au/GaAs interfaces. Appl. Phys. Lett. 49, 1514 (1986).
DOI: 10.1063/1.97318
Google Scholar
[23]
T.G. Andersson, S.P. Svensson; The formation of the Au-GaAs (001) interface. Surf. Sci. 168(1986), 301–308 (1986).
DOI: 10.1016/0039-6028(86)90860-5
Google Scholar
[24]
U.Gösele, T.Y. Tan, M.Schultz, U.Egger, P.Werner, R.Scholz an O. Breitenstein; Diffusion in GaAs and Related Compouds: Recent developments; Defect and diffusion Forum;Vols. 143-147, 1079-1094 (1997).
DOI: 10.4028/www.scientific.net/ddf.143-147.1079
Google Scholar
[25]
Shadi A. Dayeh, Darija Susac, Karen L. Kavanagh, Edward T. Yu, and Deli Wang; Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires; Adv. Funct. Mater, 19, 2102–2108 (2009).
DOI: 10.1002/adfm.200801307
Google Scholar
[26]
Toru Akiyama, Yuya Haneda, Kohji Nakamura, and Tomonori Ito; Role of Au/GaAs (111) interface on the wurtzite-structure formation during GaAs nanowire growth by vapor-liquid-solid mechanism; Phys. Rev. B 79, 153406 (2009).
DOI: 10.1103/physrevb.79.153406
Google Scholar
[27]
http://en.wikipedia.org/wiki/Surface_diffusion, access on May 17, (2019).
Google Scholar
[28]
Helmut Mehrer; Diffusion in Solids; Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series insolid-state sciences 155, Series Editors: M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. St ̈ormer; Springer-Verlag Berlin Heidelberg, part I: Part I Fundamentals of Diffusion, 27-205 (2007).
DOI: 10.1007/978-3-540-71488-0
Google Scholar
[29]
Editor: D.J. Fisher, Surface Diffusion and Surface Structure, 10 Years of Research; SCITEC PUBLICATIONS, 82-91 (2019).
Google Scholar
[30]
Bin Chen, Xuewen Fu, Jau Tang, Mykhaylo Lysevych, Hark Hoe Tan, Chennupati Jagadish, and Ahmed H. Zewail ; Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy,PNAS, December 5, vol. 114, no. 49 12876–12881 (2017).
DOI: 10.1073/pnas.1708761114
Google Scholar
[31]
J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp; The influence of the surface migration of gold on the growth of silicon nanowires. Letters 440, (2006) 69–71.
DOI: 10.1038/nature04574
Google Scholar
[32]
H.P.Ho, I.Harrison, N.Baba-Ali, B.Tuck, M.Henini, Diffusion in GaAs and other III-V Semiconductors, 10 Years of Research, Editor: D.J. Fisher; SCITEC PUBLICATIONS: Journal of Electronic Materials, 1991, 20[9], 649-652 (2019).
DOI: 10.1007/bf02654533
Google Scholar
[33]
M.Cheyssac, Sacilotti, Patriarche; vapor-liquid-solid mechanisms: challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys. 100, 044315-1 (2006).
DOI: 10.1063/1.2236163
Google Scholar
[34]
Kurt W. Kolasinski; Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth; Current Opinion in Solid State and Materials Science 10 182–191(2006).
DOI: 10.1016/j.cossms.2007.03.002
Google Scholar
[35]
S. F. Lee, L. Y. Lee, and Y. P. Chang; Controlled Growth of Germanium Nanowires via a Solid–Liquid–Solid (SLS) Mechanism, Adv. Mater. Res 557–559:523–529 (2012).
DOI: 10.4028/www.scientific.net/amr.557-559.523
Google Scholar
[36]
T.Yoshiie C.L. BauerA.G. Milnes; Interfacial reactions between gold thin films and GaAs substrates; Thin Solid Films Volume 111, Issue 2, 13, (1984) 149-166.
DOI: 10.1016/0040-6090(84)90483-8
Google Scholar
[37]
Kratzer P, Sakong S, Pankoke V.; Catalytic role of gold nanoparticle in GaAs nanowire growth: a density functional theory study; Nano Lett. ; 12(2): (2012) 943-948.
DOI: 10.1021/nl204004p
Google Scholar