On the Distance Directional Growth of GaxOy Nanomaterials Concerning the Surface Au Droplets and Au/Ga/O Clusters Outward Diffusion on the Separated Au Islands/Strips on Gaas Substrate Using Thermal Vapor-Liquid-Solid Method

Article Preview

Abstract:

This paper outlines some experimental results and discusses the new growth method for growing the different GaxOy nanomaterials formed during the outward diffusion of the surface nanoclusters (SNCs) including the Au droplets and/or surface Au/Ga/O nanoclusters from the Au separated islands/strips being on GaAs substrate during the thermal Vapor -Liquid -Solid method with two steps temperature mode. Depending on the technological conditions, during the outward diffusion of the SNCs from the Au catalyst island/strip, the different sizes, morphologies and features of nanomaterials will be formed along the surface diffusion direction with the decreasing sizes. This growth method to be so called the distance directional growth method, it has not reported in the Literature. The nanomaterial growth process here could be explained by the solid - solid phase with the self-growth mechanism from the moving-diffusing SNCs with the features formed already before based on their chemical- physical interactions between the Au catalyst island/strip and GaAs substrate. In the suitable technological conditions the surface nanoscale Kirkendall effect with Kirkendall voids also completely formed... Based on the results of Field Emission Scanning electron Microscope (FESEM), the Energy-Dispersive X-ray diffraction (EDX) measurements, the formation mechanism and effect of the SNCs outward diffusion on the growth of different GaxOy nanomaterials have discussed more in detailed.. The diffusivities of the SNCs depending on technological conditions in the different samples have estimated by the random walk theory, their values are in the range of 8.35x10-10 to 10-11 m2/sec. The distance directional growth method could be applied for the growing and controlling the nanomaterials configurations outside the Au catalyst island/strip on GaAs substrate with the different sizes for nano devices application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-46

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Patently; Nano materials-the driving force, Nanotoday, 7(12) 20 (2004).

Google Scholar

[2] J. Kim; Nanodevices by using Semiconductor Nanowires. University of Texas at Austin, Austin (2004).

Google Scholar

[3] Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F & Markakis V: Manufacturing nanomaterials: from research to industry. Manufacturing Rev. 2014,1, 11.

DOI: 10.1051/mfreview/2014009

Google Scholar

[4] Alejandro Soliva Beser; Nanotechnology Fabrication Methods; ET 1039 – Nanotechnology;http://www.fisica.uji.es/priv/web_ET1039/2016.pdf (acess on Feb.15.2020).

Google Scholar

[5] James R., Heath Francoise K., LeGoues; A liquid solution synthesis of single crystal germanium quantum wires; Chemical Physics Letters; Volume 208, Issues 3–4, 11 June 1993, pp.263-268.

DOI: 10.1016/0009-2614(93)89073-q

Google Scholar

[6] R. S. Wagner and W. C. Ellis; Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett 4(5):89–90 (1964).

DOI: 10.1063/1.1753975

Google Scholar

[7] Schwalbach EJ, Voorhees PW; Phase equilibrium and nucleation in VLS-grown nanowires; Nano Lett. 2008 Nov;8(11):3739-45.

DOI: 10.1021/nl801987j

Google Scholar

[8] Lu, H., Meng, X.; Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth. Sci Rep 5, 11263 (2015). https://doi.org/10.1038/srep11263.

DOI: 10.1038/srep11263

Google Scholar

[9] Dunwei Wang; Synthesis and properties of germanium nanowires; Pure Appl. Chem., Vol. 79, No. 1, p.55–65, 2007.

Google Scholar

[10] S. Noor Mohammad For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid mechanism, J. Chem. Phys.131(22) (2009).

DOI: 10.1063/1.3246169

Google Scholar

[11] Chuanbo Li, Hiroshi Mizuta and Shunri Oda (July 18th 2011). Growth and characterisation of Ge Nanowires by chemical vapour deposition, Nanowires - Implementations and Applications, Abbass Hashim, Intech Open,.

DOI: 10.5772/18991

Google Scholar

[12] Arnoldas UŽUPIS, Jacek TYCZKOWSKI, Kondrad GUBIEC, Sigitas TAMULEVIČIUS, Mindaugas ANDRULEVIČIUS, Mindaugas PUCĖTA; Properties of GeXOY:H Thin Films Produced by Plasma-Assisted Chemical Vapor Deposition; ISSN 1392–1320; MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 15, No. 1. (2009).

Google Scholar

[13] Y. F. Zhang et al. Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett 72(15):1835–1837 (1998).

DOI: 10.1063/1.121199

Google Scholar

[14] Z. Zhu et al. The Vapor-Solid-Solid Growth of Ge Nanowires on Ge (110) by Molecular Beam Epitaxy, Axiv 122 094304, (2017).

Google Scholar

[15] Y. Wu and P. Yang; Germanium nanowire growth via simple vapor transport, Chem. Mater.12 3: 605–607 (2000).

DOI: 10.1021/cm9907514

Google Scholar

[16] Khac An Dao, Tien Dai Nguyen, Anh Tuan Phan & Hung Manh Do; On the formation of voids, etched holes, and GaO particles configuration during the nanowires growth by VLS method on GaAs substrate, Journal of Materials Science: Materials in Electronics, J Mater Sci: Mater Electron 24: (2013) 2513-2520.

DOI: 10.1007/s10854-013-1126-1

Google Scholar

[17] Dao Khac An, Dao D. Khang, Phan A. Tuan, Nguyen T. Dai and Do Hung Manh; The effects of Au surface diffusion to formation of Au droplets/cluster and nanowire growth on GaAs substrate using VLS method, Journal of Materials Science: Materials in electronics; J.Mater Sci:Mater Electron, 23(11) pp.2065-2074 (2012).

DOI: 10.1007/s10854-012-0704-y

Google Scholar

[18] Dao Khac An, Nguyen Xuan Chung, Pham Hong Trang, Hoang Van Vuong, Phan Viet Phong and Phan Anh Tuan; On growth mechanisms and dynamic simulation of growth process based on the experimental results of nanowire growth by VLS method on semiconductor substrates; IOP Publishing, Journal of Physics: Conference Series Vol.187, 012052 (2009).

DOI: 10.1088/1742-6596/187/1/012052

Google Scholar

[19] Khac An Dao, Anh Tuan Phan, Hung Manh Do,Tien Hung Luu, Meiken Falke, M. MacKenzie; The influences of technological conditions and Au cluster islands on morphology of Ga2O3 nanowires grown by VLS method on GaAs substrate; J. Mater. Sci.: Mater. Electron, Vol. 22, Number 2, pp.204-216 (2011).

DOI: 10.1007/s10854-010-0115-x

Google Scholar

[20] DAO, K.A.; Pham, H.T.; Nguyen, T.T.; Phan, A.T. The Formation Mechanism and Model of the Surface Nanoscale Kirkendall Effect on Au Catalyst Island/GaAs Substrate by Thermal Vapor-Liquid-Solid Method with Two-Step Temperature Mode. Catalysts, 9, 1072 (2019).

DOI: 10.3390/catal9121072

Google Scholar

[21] V.G. Weizer, N.S. Fatemi; The interaction of gold with gallium arsenide. J. Appl. Phys. 64, 4618 (1988).

Google Scholar

[22] Z. Liliental-Weber, J. Washburn, N. Newman, W.E. Spicer, E.R. Weber; Morphology of Au/GaAs interfaces. Appl. Phys. Lett. 49, 1514 (1986).

DOI: 10.1063/1.97318

Google Scholar

[23] T.G. Andersson, S.P. Svensson; The formation of the Au-GaAs (001) interface. Surf. Sci. 168(1986), 301–308 (1986).

DOI: 10.1016/0039-6028(86)90860-5

Google Scholar

[24] U.Gösele, T.Y. Tan, M.Schultz, U.Egger, P.Werner, R.Scholz an O. Breitenstein; Diffusion in GaAs and Related Compouds: Recent developments; Defect and diffusion Forum;Vols. 143-147, 1079-1094 (1997).

DOI: 10.4028/www.scientific.net/ddf.143-147.1079

Google Scholar

[25] Shadi A. Dayeh, Darija Susac, Karen L. Kavanagh, Edward T. Yu, and Deli Wang; Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires; Adv. Funct. Mater, 19, 2102–2108 (2009).

DOI: 10.1002/adfm.200801307

Google Scholar

[26] Toru Akiyama, Yuya Haneda, Kohji Nakamura, and Tomonori Ito; Role of Au/GaAs (111) interface on the wurtzite-structure formation during GaAs nanowire growth by vapor-liquid-solid mechanism; Phys. Rev. B 79, 153406 (2009).

DOI: 10.1103/physrevb.79.153406

Google Scholar

[27] http://en.wikipedia.org/wiki/Surface_diffusion, access on May 17, (2019).

Google Scholar

[28] Helmut Mehrer; Diffusion in Solids; Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series insolid-state sciences 155, Series Editors: M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. St ̈ormer; Springer-Verlag Berlin Heidelberg, part I: Part I Fundamentals of Diffusion, 27-205 (2007).

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[29] Editor: D.J. Fisher, Surface Diffusion and Surface Structure, 10 Years of Research; SCITEC PUBLICATIONS, 82-91 (2019).

Google Scholar

[30] Bin Chen, Xuewen Fu, Jau Tang, Mykhaylo Lysevych, Hark Hoe Tan, Chennupati Jagadish, and Ahmed H. Zewail ; Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy,PNAS, December 5, vol. 114, no. 49 12876–12881 (2017).

DOI: 10.1073/pnas.1708761114

Google Scholar

[31] J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp; The influence of the surface migration of gold on the growth of silicon nanowires. Letters 440, (2006) 69–71.

DOI: 10.1038/nature04574

Google Scholar

[32] H.P.Ho, I.Harrison, N.Baba-Ali, B.Tuck, M.Henini, Diffusion in GaAs and other III-V Semiconductors, 10 Years of Research, Editor: D.J. Fisher; SCITEC PUBLICATIONS: Journal of Electronic Materials, 1991, 20[9], 649-652 (2019).

DOI: 10.1007/bf02654533

Google Scholar

[33] M.Cheyssac, Sacilotti, Patriarche; vapor-liquid-solid mechanisms: challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys. 100, 044315-1 (2006).

DOI: 10.1063/1.2236163

Google Scholar

[34] Kurt W. Kolasinski; Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth; Current Opinion in Solid State and Materials Science 10 182–191(2006).

DOI: 10.1016/j.cossms.2007.03.002

Google Scholar

[35] S. F. Lee, L. Y. Lee, and Y. P. Chang; Controlled Growth of Germanium Nanowires via a Solid–Liquid–Solid (SLS) Mechanism, Adv. Mater. Res 557–559:523–529 (2012).

DOI: 10.4028/www.scientific.net/amr.557-559.523

Google Scholar

[36] T.Yoshiie C.L. BauerA.G. Milnes; Interfacial reactions between gold thin films and GaAs substrates; Thin Solid Films Volume 111, Issue 2, 13, (1984) 149-166.

DOI: 10.1016/0040-6090(84)90483-8

Google Scholar

[37] Kratzer P, Sakong S, Pankoke V.; Catalytic role of gold nanoparticle in GaAs nanowire growth: a density functional theory study; Nano Lett. ; 12(2): (2012) 943-948.

DOI: 10.1021/nl204004p

Google Scholar