Effect of Solution Concentration on ZnO/ZnAl2O4 Nanocomposite Thin Films Formation Deposited by Ultrasonic Spray Pyrolysis on Glass and Si(111) Substrates

Article Preview

Abstract:

A complex ZnO/ZnAl2O4 heterostructures thin films on glass and Si (111) substrates have been successively obtained by a soft ultrasonic spray pyrolysis (USP) method deposition using the Zn/Al molar ratios concentrations of 0.07/0.13 and 0.1/0.1, respectively. According to (XRD) an ordered zinc oxide (ZnO) and zinc aluminate (ZnAl2O4) structures deposited onto glass from the air annealing at 500 °C during 2 hours was observed and confirmed by the (EDX), (FTIR) and Raman spectroscopy techniques. The estimated crystallites size and stress values of ZnO and ZnAl2O4 in the ZnO/ZnAl2O4/glass film were 19 nm/0.469 GPa and 11 nm/-0.292 GPa, respectively. The lower Zn/Al molar ratio around 0.035/0.06 produced only ZnO as a single phase, suggesting the Al insufficient quantity. The Si (100) substrate with 0.07 Zn molarity conducted to the Zn2SiO4/ZnO/ZnAl2O4 composite. The Raman integrated intensity bands of ZnO and ZnAl2O4 increases with increasing Zn to Al molar ratio (0.1/0.1 comparatively to 0.07/0.13). The ZnO&ZnAl2O4 crystallinity enhances as Zn molarity increases. The ZnO films in the composites grow with (002) texture. The TC(hkl) value indicated that ZnAl2O4 in the ZnO/ZnAl2O4/glass layer is polycrystalline preferentially oriented along the (311) plane. Spinel ZnAl2O4 oxide onto Si (111) substrate grown according to the (220) orientation. Crystallites are larger in ZnO/ZnAl2O4/Si than in ZnO/ZnAl2O4/glass. The ZnO/ZnAl2O4 film onto glass substrate is transparent in the visible and near infrared regions and sensitive to UV absorption, as characterized by UV-Vis spectroscopy. The ZnO and ZnAl2O4 Eg values in the ZnO/ZnAl2O4/glass composite were 3.25 and 3.88 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-30

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shahmirzaee, M. Shafiee Afarani, A. Masoud Arabi, A. Iran Nejhad, In situ crystallization of ZnAl2O4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater, Res. Chem. Intermed. 43 (2017) 321–340.

DOI: 10.1007/s11164-016-2624-6

Google Scholar

[2] Y. Jianhui, Z. Li, L. Xiaoyan, Z. Xiuxiu, D. Chaohua, Preparation and Photocatalytic Properties of ZnO/CuO/ZnAl2O4 Composite Hollow Microspheres by One-Pot Method, Chem. Sci. Rev. and Lett. 3: 12 (2014) 1080-1090.

Google Scholar

[3] L. Zhang, J.Y. Minjie Zhou, Y. Yang, Y-N. Liu, Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres, App. Sur. Sci. 268 (2013) 237-245.

DOI: 10.1016/j.apsusc.2012.12.069

Google Scholar

[4] X. Yuan, X. Cheng, Q. Jing, J. Niu, D. Peng, Z. Feng and X. Wu, ZnO/ZnAl2O4 Nanocomposite with 3D Sphere-Like Hierarchical Structure for Photocatalytic Reduction of Aqueous Cr(VI), Mater. 11, (2018) 1624-1647.

DOI: 10.3390/ma11091624

Google Scholar

[5] K. Kumar, K. Ramamoorthy, P-M. Koinkar, R. Chandramohan, K. Sankaranarayanana, J. Cry. Gro. 289 (2006) 405-407.

Google Scholar

[6] R. Huo, y. Kuang, Z. Zaho, F. Zhang, S. Xu, Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spray dried microsphere, J. Col. Inter. Sci. 407 (2013) 17-21.

DOI: 10.1016/j.jcis.2013.06.067

Google Scholar

[7] V. Kumari and A. Bhaumik, Mesoporous ZnAl2O4: an efficient adsorbent for the removal of arsenic from contaminated water, Dalt. Trans. 26: 44 (2015) 11843-11851.

DOI: 10.1039/c5dt01333j

Google Scholar

[8] L. Zhang, J-h. Yan, M-j. Zhou, Y-p. Yu, Y. Liu, Y-n. Liu, Photocatalytic degradation and inactivation of Escherichia coli by ZnO/ZnAl2O4 with heteronanostructures, Transactions of Nonferrous Metals Society of China, 24: 3 (2014) 743-749.

DOI: 10.1016/s1003-6326(14)63120-4

Google Scholar

[9] X.F. Zhao, L. Wang, X. Xu, X.D. Lei, S.L. Xu, F.Z. Zhang, Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network, AIChE J. 58 (2012) 573–582.

DOI: 10.1002/aic.12597

Google Scholar

[10] B. Behera, S. Pal, L. Kanungo, S. Bhand, S. Chandra, Synthesis and characterization of ZnO-ZnAl2O4 whiskers and their application in biosensors, J. Nan. Let. 5: 2 (2015).

Google Scholar

[11] M-Y. Guan, D-M. Xu, Y-F. Song, Y. Guo, ZnO/ZnAl2O4 prepared by calcination of ZnAl layered double hydroxides for ethanol sensing, Sensors and Actuators B, 188 (2013) 1148-1154.

DOI: 10.1016/j.snb.2013.08.016

Google Scholar

[12] M. Hoppe, O. Lupan, V. Postica, N. Wolff, V. Duppel, L. Kienle, I. Tiginyanu, R. Adelung, ZnAl2O4 - functionalized zinc oxide microstructures for highly selective hydrogen gas sensing applications, Physica Status Solidi (a), 215(7) (2018).

DOI: 10.1002/pssa.201700772

Google Scholar

[13] R. Huo, y. Kuang, Z. Zaho, F. Zhang, S. Xu, Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spraydried microsphere, J. Coll. Inter. Sci. 407 (2013) 17-21.

DOI: 10.1016/j.jcis.2013.06.067

Google Scholar

[14] Y.D. Ivakin, M.N. Danchevskaya, O.G. Ovchinnikova, G.P. Muravieva, Thermovaporous synthesis of fine crystalline gahnite (ZnAl2O4), J. Mater. Sci. 41 (2006) 1377–1383.

DOI: 10.1007/s10853-006-7410-1

Google Scholar

[15] J.L. Suárez-Franco, M. García-Hipólito, M.Á. Surárez-Rosales, J.A. Fernández-Pedrero, O. Álvarez-Fregoso, J.A. Juárez-Islas, and M.A. Álvarez-Pérez, Effects of Surface Morphology of ZnAl2O4 Ceramic Materials on Osteoblastic Cells Responses, Journal of Nanomaterials, (2013).

DOI: 10.1155/2013/361249

Google Scholar

[16] M. García-Hipólito, C.D. Hernández-Pérez, O. Alvarez-Fregoso, E. Martıınez, J. Guzmaan-Mendoza, C. Falcony, Characterization of europium doped zinc aluminate luminescent coatings synthesized by ultrasonic spray pyrolysis process, Opt. Mater. 22 (2003) 345–351.

DOI: 10.1016/s0925-3467(02)00346-4

Google Scholar

[17] H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, C. Zhang, ZnAl2O4 as a novel high-surface-area ozonation catalyst : One-step green synthesis, catalytic performance and mechanism, Chemical Engineering Journal, 260 (2015) 623-630.

DOI: 10.1016/j.cej.2014.09.034

Google Scholar

[18] P. Mierczynski, W. Maniukiewicz, T.P. Maniecki, Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction, Cent. Eur. J. Chem. 11: 6 (2013) 912-919.

DOI: 10.2478/s11532-013-0223-6

Google Scholar

[19] E.L. Foletto, S. Battiston, J.M. Simoes, M.M. Bassaco, L.S. Fagundes Pereira, E.M. M. Flores, E.I. Muller, Synthesis of ZnAl2O4 nanoparticules by different routes and the effect of its pore size on the photocatalytic process, Micr. Meso.Mater. 163 (2012) 29-33.

DOI: 10.1016/j.micromeso.2012.06.039

Google Scholar

[20] S-F. Wang, G-Z. Sun, L-M. Fang, L. Lei, X. Xiang & X-T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials, Scie. Rep. 5:12849 ((2015).

DOI: 10.1038/srep12849

Google Scholar

[21] M.H. Mohd Zaid, K. Amin Matori, S.H. Abdul Aziz, H. Mohamed Kamari, Z. Abdul Wahab, Y. Wing Fen, I. Mustapha Alibe, Synthesis and characterization of low cost willemite based glass–ceramic for opto-electronic applications, J. Mater. Sci: Mater Electron, (2016).

DOI: 10.1007/s10854-016-5234-6

Google Scholar

[22] D. Kumar Bharti, M. Kumar Gupta, A. Kumar Srivastava, Giant dielectric constant and band gap reduction in hydrothermal grown highly crystalline zinc silicate nanorods, Mater. Lett. 232 (2018) 66–69.

DOI: 10.1016/j.matlet.2018.08.085

Google Scholar

[23] B. Chandra Babu, B. Vengla Rao, M. Ravi, S. Babu, Structural, microstructural, optical, and dielectric properties of Mn2+:Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method, J. Mol. Str. 1127 (2017) 6-14.

DOI: 10.1016/j.molstruc.2016.07.074

Google Scholar

[24] S.Zh. Karazhanov, P. Ravindran, P. Vajeeston, A.G. Ulyashin, H. Fjellvag and B.G. Svensson, Phase stability and pressure-induced structural transitions at zero temperature in ZnSiO3 and Zn2SiO4, J. Phys.: Condens. Matter 21 (2009) 485801 (9pp).

DOI: 10.1088/0953-8984/21/48/485801

Google Scholar

[25] R. Chandramohan, V. Dhanasekaran, R. Arumugam, K. Sundaram, J. Thirumalai, T. Mahalingam, Properties Evaluation of Annealed ZnAl2O4 Alloy Thin Films, Dig. J. Nan. Bios. 7 : 3 (2012) 1315 -1325.

Google Scholar

[26] S.Y. Hu, Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W. Water, The structural and optical properties of ZnO/Si thin films by RTA treatments, App. Sur. Sci. 254 (2008) 1578–1582.

DOI: 10.1016/j.apsusc.2007.07.134

Google Scholar

[27] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Influence of post- annealing treatment on the structure properties of ZnO films, App. Sur. Sci. 241 (2005) 303–308.

DOI: 10.1016/j.apsusc.2004.07.056

Google Scholar

[28] Ş. Talu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, S.M. Elahi, A. Boochani, Microstructure and micromorphology of ZnO thin films: Case study on Al doping and annealing effects, Super. Micros. 93 (2016) 109-121.

DOI: 10.1016/j.spmi.2016.03.003

Google Scholar

[29] M. eh, H-C. Chen, M-J Chen, J-R. Yang and M. Shiojiri, Structure and Electro-Optical Properties of Thin Films Grown by Alternate Atomic Layer Deposition of ZnO and Al2O3 on the Sapphire Substrate, Mater. Trans.: Special Issue on Development and Fabrication of Advanced Materials Assisted by Nanotechnology and Microanalysis, 51: 2 (2010) 219-226.

DOI: 10.2320/matertrans.mc200902

Google Scholar

[30] M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahman, M. Rusop, Thermal annealing-induced formation of ZnO nanoparticles:Minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties, J. All. Comp. 610 (2014) 575–588.

DOI: 10.1016/j.jallcom.2014.05.036

Google Scholar

[31] S. Iaiche and A. Djelloul, ZnO/ZnAl2O4 Nanocomposite Films Studied by X-Ray Diffraction, FTIR, and X-Ray Photoelectron Spectroscopy, J. Spectr. (2015).

DOI: 10.1155/2015/836859

Google Scholar

[32] D.I. Rusu, G.G. Rusu and D. Luca, Structural Characteristics and Optical Properties of Thermally Oxidized Zinc Films, Act. Phys. Polo. A, 119: 6 (2011).

DOI: 10.12693/aphyspola.119.850

Google Scholar

[33] P. Kumar, A. Singh, D. Pathak, L. Hromadko, T. Wagner, Structural and optical properties of sol-gel processed ZnCdMgO nanostructured films as transparent conductor, Adv. Mater. Lett. 5(10) (2014).

DOI: 10.5185/amlett.2014.6586

Google Scholar

[34] P.C. Dorsey, B.J. Rappoli, K.S. Grabowski, P. Lubitz, D.B. Chrisey, and J.S. Horwitz, J. Appl. Phys. 81 (1997) 6884.

Google Scholar

[35] A. Bouhemadou, R. Khenata, Phys. Lett. A, 360 (2006) 339–343.

Google Scholar

[36] A.B. Usseinov, E.A. Kotomin, A.T. Zhukovskii and J. Puans, T. Sol. Fil. 553 (2014) 38–42.

Google Scholar

[37] G. Kaur, A. Mitra and K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications, Prog. in Nat. Sci.: Mater. Inter. 25 (2015) 12–21.

DOI: 10.1016/j.pnsc.2015.01.012

Google Scholar

[38] K. Nadeemn, S.Rahman and M. Mumtaz, Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles, Prog. in Nat. Sci.: Mater. Inter. 25 (2015) 111–116.

DOI: 10.1016/j.pnsc.2015.02.001

Google Scholar

[39] M. Bizarro and S.E. Rodi, New Visible-Light Active Semiconductors, Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications, Springer, 2015, pp.103-155. Chapter 4 Physicochemical Characterization of Photocatalytic Materials, in: A. Hernández-Ramírez, I. Medina-Ramírez (Eds.).

DOI: 10.1007/978-3-319-10999-2

Google Scholar

[40] V. Savunthari Kirankumar, S. Sumathi, Catalytic activity of bismuth doped zinc aluminate nanoparticles towards environmental remediation, Mater. Res. Bull. 93 (2017) 74–82.

DOI: 10.1016/j.materresbull.2017.04.022

Google Scholar

[41] M. Ebrahimizadeh Abrishami, S.M. Hosseini, E. Attarankakhki and M. Ghasemifards, Synthesis and structure of pure and Mn-doped zinc oxide nanopowders, Inter. J. Nan. 9: 1 & 2 (2010) 19–28.

Google Scholar

[42] A. Djelloul, M-S. Aida, J. Bougdira, Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline a-alumina substrates by ultrasonic spray pyrolysis, J. Lum. 130 (2010) 2113–2117.

DOI: 10.1016/j.jlumin.2010.06.002

Google Scholar

[43] K. Bouzid, A. Djelloul, N. Bouzid, J. Bougdira, Electrical resistivity and photoluminescence of zinc oxide films prepared by ultrasonic spray pyrolysis, Phys.Stat. Sol. A, 206: 1 (2009) 106–115.

DOI: 10.1002/pssa.200824403

Google Scholar

[44] D. Djouadi, A. Chelouche, A. Aksas, Amplification of the UV Emission of ZnO: Al Thin Films Prepared by Sol-Gel Method, J. Mater. Environ. Sci. 3: 3 (2012) 585-590.

Google Scholar

[45] C.M. Fang, C-K. Loong, G.A. de Wijs, and G. de With, Phonon spectrum of ZnAl2O4 spinel from inelastic neutron scattering and first-principles calculations, Phys. Rev. B 66, 144301 (2002).

Google Scholar

[46] K. Hoggas, C. Nouveau, A. Djelloul, M. Bououdina, Structural, microstructural, and optical properties of Zn1-xMgxO thin films grown onto glass substrate by ultrasonic spray pyrolysis, Appl. Phys. A, 120 (2015) 745–755.

DOI: 10.1007/s00339-015-9252-7

Google Scholar

[47] H. Yu, J. Yu, B. Cheng, M. Zhou, Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons, Journal of Solid State Chemistry, 179 (2006) 349–354.

DOI: 10.1016/j.jssc.2005.10.024

Google Scholar

[48] A. Abdalla, S. Bereznev, N. Spalatu, O. Volobujeva, N. Sleptsuk & M. Danilson, Pulsed laser deposition of Zn(O,Se) layers in nitrogen background Pressure, 9:17443 (2019).

DOI: 10.1038/s41598-019-54008-1

Google Scholar

[49] H.W. Lee, S.P. Lau, Y.G. Wang, B.K. Tay, H. H. Hang, T. Sol. Fil. 458 (2004).

Google Scholar

[50] W.Y. Liang, A.D. Yoffe, Phys. Rev. Lett. 20 (1968) 59.

Google Scholar

[51] M. Kumar, V. Natarajan and S.V Godbole, Synthesis, characterization, photoluminescence and thermally stimulated luminescence investigations of orange red-emitting Sm3+ doped ZnAl2O4 phosphor, Bull. Mater. Sci. 37: 6 (2014) 1205–1214.

DOI: 10.1007/s12034-014-0063-9

Google Scholar

[52] A.A. Letailleur, S. Yu Grachev, E. Barthel, E. Sondergard, K. Nomenvo, High Efficiency White Luminescence of Alumina doped ZnO, J. Lum. 131: 12 (2011) 2646-2651.

DOI: 10.1016/j.jlumin.2011.06.044

Google Scholar

[53] J.P. Roucan et M-C. N-Dutrioux, Proppriétés physico-chimiques (K1) Article : Propriétés physiques des composés minéraux, 82 (2010).

DOI: 10.51257/a-v1-k120

Google Scholar

[54] Handbook of Chemistry and Physics, 56th Edition, Ed. R.C. Weast, CRS Press, (1975).

Google Scholar

[55] B. Chandra Babu, S. Buddhudu, Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors, J. Spectr. Dyn. 4: 5 (2014).

DOI: 10.1007/s12648-014-0455-0

Google Scholar

[56] C. Xu, J. Chun, K. Rho and D. Eon Kim, Fabrication and photoluminescence of zinc silicate/silica modulated ZnO nanowires, Nanot. 16 (2005) 2808–2812.

DOI: 10.1088/0957-4484/16/12/012

Google Scholar

[57] A-M. Ali, A.A. Ismail, R. Najmy, A. Al-Hajry, Preparation and characterization of ZnO–SiO2 thin films as highly efficient photocatalyst, J. Photochem. Photob. A: Chem. 275 (2014) 37–46.

DOI: 10.1016/j.jphotochem.2013.11.002

Google Scholar

[58] V. D'Ippolito, G. B. Andreozzi, F. Bosi, U. Hålenius, L. Mantovani, D. Bersani and R.A. Fregola, Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite (ZnAl2O4) composition, Mineral. Mag. 77(7) (2013) 2941–2953.

DOI: 10.1180/minmag.2013.077.7.05

Google Scholar

[59] V. D'Ippolito, G.B. Andreozzi, D. Bersani and P.P. Lottici, Raman fingerprint of chromate, aluminate and ferrite spinels, J. Ram. Spectr. (2015).

DOI: 10.1002/jrs.4764

Google Scholar

[60] D. Errandonea, Chapter 2 AB2O4 Compounds at High Pressures, Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, F. J. Manjon, I. Tiginyanu, V. Ursaki (Eds), XIII.

DOI: 10.1007/978-3-642-40367-5

Google Scholar

[61] T.B. Ivetić, M.R. Dimitrievska, I.O. Gúth, Lj.R. -Dačanin, S.R. Lukić-Petrović, Structural and optical properties of europium-doped zinc oxide nanopowders prepared by mechanochemical and combustion reaction methods, J. Res. in Phys. 36: 1 (2012) 43-51.

DOI: 10.2478/v10242-012-0012-0

Google Scholar

[62] O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and Characterization of Ag- or Sb-Doped ZnO Nanorods by a Facile Hydrothermal Route, J. Phys. Chem. C, 114 (2010) 12401–12408.

DOI: 10.1021/jp910263n

Google Scholar

[63] D.N. Montenegro, V. Hortelano, O. Martínez, M.C. Martínez-Tomas, V. Sallet, V. Muñoz-Sanjosé, J. Jiménez, Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition, J. Phys. D: Appl. Phys. 46 (2013) 235302.

DOI: 10.1088/0022-3727/46/23/235302

Google Scholar

[64] K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, Y.J. Hsiao, The crystallization and physical properties of Al-doped ZnO nanoparticles, App. Sur. Sci. 254 (2008) 5791–5795.

DOI: 10.1016/j.apsusc.2008.03.080

Google Scholar

[65] S. Kunj, K. Sreenivas, Residual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substrates, Cur. App. Phys. 16: 7 (2016).

DOI: 10.1016/j.cap.2016.04.008

Google Scholar

[66] I. Musa, N. Qamhieh, S. Thaker Mahmoud, Synthesis and length dependent photoluminescence property of zinc oxide nanorods, Res. in Phys. 7 (2017) 3552–3556.

DOI: 10.1016/j.rinp.2017.09.035

Google Scholar

[67] F-C. Liu, J-Y. Li, T-H. Chen, C-H. Chang, C-T. Lee, W-H. Hsiao and D-S. Liu, Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System, Mater. 10: 797 (2017).

DOI: 10.3390/ma10070797

Google Scholar

[68] A. Khan, Raman Spectroscopic Study of the ZnO Nanostructures, J. Pak. Mater. Soc., 4: 1 (2010).

Google Scholar

[69] A. Mossad Ali, A.A. Ismail, R. Najmye, A. Al-Hajry, Preparation and characterization of ZnO–SiO2 thin films as highly efficient photocatalyst, Journal of Photochemistry and Photobiology A: Chem. 275 (2014) 37–46.

DOI: 10.1016/j.jphotochem.2013.11.002

Google Scholar

[70] V. Postica, A. Vahl, D. Santos-Carballal, T. Dankwort, L. Kienle, M. Hoppe, A. Cadi-Essadek, N.H. de Leeuw, M-I. Terasa, R. Adelung, F. Faupel, O. Lupan, Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization, ACS Appl. Mater. Inter. 12(12):12 (2019).

DOI: 10.1021/acsami.9b07275

Google Scholar

[71] B. Chandra Babu, S. Buddhudu, Analysis of structural and electrical properties of Ni2+:Zn2SiO4 ceramic powders by sol–gel method, J. Sol-Gel Sci. Technol. (2014).

DOI: 10.1007/s10971-014-3296-6

Google Scholar

[72] M. Zhang, Raman Spectroscopy and Applications, Chapter 5: Raman Study of the Crystalline-to Amorphous State in Alpha-Decay-Damaged Materials, INTECH, (2017).

DOI: 10.5772/65910

Google Scholar

[73] S. Lopez-Moreno, P. Rodriguez-Hernandez, A. Muñoz, A.H. Romero, F.J. Manjon, D. Errandonea, E. Rusu, V.V. Ursaki, Lattice dynamics of ZnAl2O4 and ZnGa2O4 under high pressure, Ann. Phys. 523: 1-2 (2011) 157–167.

DOI: 10.1002/andp.201000096

Google Scholar

[74] A. Chopelas, A.M. Hofmeister, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Phys. Chem. Min. 18 (1991) 279-293.

DOI: 10.1007/bf00200186

Google Scholar

[75] A. Giussani, P. Zaumseil, O. Seifarth, P. Storck, T. Schroeder, A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures, New J. Phys.12 (2010) 093005.

DOI: 10.1088/1367-2630/12/9/093005

Google Scholar

[76] K. Chitrarasu, J. Udaya Bhanu, R. Dhanabal, A. Chandrabose, P. Thangadurai, Structural evolution and electrical properties of the biphasic compound a-Al2O3:MgAl2O4, Mater. Res. Bull. 90 (2017) 244–252.

DOI: 10.1016/j.materresbull.2017.01.053

Google Scholar

[77] K.R. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Photoluminescence and Raman studies in swift heavy ion irradiated polycrystalline aluminum oxide, Bull. Mater. Sci. 32: 5 (2009) 515–519.

DOI: 10.1007/s12034-009-0076-y

Google Scholar