Nanocomposite Synthesis from a Natural Clay-Rich Soils and Exhausted Coffee Grounds for Environmental Applications

Article Preview

Abstract:

Natural clays, engineered Ag-nanoparticles (NP), TiO2-NP, and exhausted coffee grounds were used to synthesize a nanocomposite 7NC using a Vertisol soil through a single-step by thermal method, to build a nanomaterial to degrade or filtrate pollutants from soils, water or air. The surface characteristics and the porosity of the composite were studied through nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer–Emmett–Teller (BET) equation and the results indicated that the microporous composites ranged a surface area of 17.36 m2 g-1. X-ray diffraction showed crystalline structure and crystalline phase of the nanocomposites. HR-TEM-STEM results demonstrated that TiO2-NP surrounded Ag-NP, and both were impregnated on natural soil nanoparticles. Oxidation states of the Ag-NP and TiO2-NP were analyzed by X-ray photoelectron spectroscopy (XPS) The energy gap of nanocomposite 7NC was determined using the Kubelka-Munck model from Ultraviolet–visible diffuse reflectance (UV–Visible DRS) spectra. The photocatalytic activity of these nanocomposites was evaluated, and the results indicated that nanocomposite with Vertisol-soil-NP (7NC) degraded the harmful organic compound methylene blue (MB) while the antimicrobial activity and resistance against Escherichia coli and Staphylococcus aureus and the zone of inhibition (ZOI) also were analyzed. The nanocomposites Ag-NP/TiO2-NP/natural-soil-NP/exhausted coffee-ground showed its for the development of an efficient material for environmental remediation with photocatalytic and antimicrobial activity.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L. Joseph, Byung-Moon Jun, Min Jang, C. Min Park, J. C. Muñoz-Senmache, A. J. Hernández-Maldonado, A. Heyden, Miao Yu, Y. Yoon, Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents, Chem. Eng. J. 369 (2019) 928–946.

DOI: 10.1016/j.cej.2019.03.173

Google Scholar

[2] K. I. Ekpeghere, W. J. Sim, H. J. Lee, and J. E. Oh, Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment, Sci. Total Environ. 640-641 (2018) 1015-1023.

DOI: 10.1016/j.scitotenv.2018.05.218

Google Scholar

[3] M. K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017) 438–462.

DOI: 10.1016/j.cej.2016.09.029

Google Scholar

[4] Andrea Pérez-Moreno, Cesar Roberto Sarabia-Castillo, Gabriela Medina-Pérez, Hermes Pérez-Hernández, Jorge Roque De La Puente, Sirenia González-Pozos, Langen Corlay-Chee, Angelina Chamizo-Checa, Rafael G. Campos-Montiel, Fabián Fernández-Luqueño. Nanomaterials modify the growth of crops and some characteristics of organisms from agricultural or forest soils: An experimental study at laboratory, greenhouse and land level. Mexican J. Biotech. 4 (2019) 29-49.

DOI: 10.29267/mxjb.2019.4.4.29

Google Scholar

[5] S. Yazici Guvenc, B. Alan, E. Adar, and M. S. Bilgili, The impact of nanoparticles on aerobic degradation of municipal solid waste, Waste Manag. Res. 35 (2017) 426–436.

DOI: 10.1177/0734242x17695884

Google Scholar

[6] J. Pérez-Carvajal, P. Aranda, S. Obregón, G. Colón, and E. Ruiz-Hitzky, TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production, Microporous Mesoporous Mater. 222 (2016) 120–127.

DOI: 10.1016/j.micromeso.2015.10.007

Google Scholar

[7] H. P. Qi, H. L. Wang, D. Y. Zhao, and W. F. Jiang, Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation, Appl. Surf. Sci. 480 (2018) 105–114.

DOI: 10.1016/j.apsusc.2019.02.194

Google Scholar

[8] T. S. Wu, K. X. Wang, G. D. Li, S. Y. Sun, J. Sun, and J. S. Chen, Montmorillonite-Supported Ag/TiO2 nanoparticles: An efficient visible-light bacteria photodegradation material, ACS Appl. Mater. Interfaces 2-2 (2010) 544–550.

DOI: 10.1021/am900743d

Google Scholar

[9] Y. Poo-arporn et al., Photocatalytic oxidation of thiophene over cerium doped TiO2 thin film, Mater. Sci. Semicond. Process. 93 (2018) 21–27.

DOI: 10.1016/j.mssp.2018.12.025

Google Scholar

[10] I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, Elsevier B.V., (2017).

Google Scholar

[11] Wayne Institute, Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 2012 Eleventh Edition, vol. 32, no. 1.

Google Scholar

[12] USEPA, National Primary Drinking Water Regulations Contaminant MCL or TT, 1, (2009) 1-10.

Google Scholar

[13] S. OPdl. and Paho/WHO, Prueba de Difusión por Disco, chapter 4 PAHO/WHO (2010) 39–52.

Google Scholar

[14] Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang and Q. Peng, Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment, Nanomaterials, 8-35 (2018) 1-14.

DOI: 10.3390/nano8010035

Google Scholar

[15] P. Makal and D. Das, Self-doped TiO2 nanowires in TiO2 -B single phase, TiO2 -B/anatase and TiO2 -anatase/rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light, Appl. Surf. Sci. 455 (2018) 1106–1115.

DOI: 10.1016/j.apsusc.2018.06.055

Google Scholar

[16] X. Yao, X. Liu, and X. Hu, Synthesis of the Ag/AgCl/g-C3N4 composite with high photocatalytic activity under visible light irradiation," ChemCatChem, 6 (2014) 3409–3418.

DOI: 10.1002/cctc.201402487

Google Scholar

[17] R. Saleh, A. Taufik, and S. P. Prakoso, Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants: Influence of oxidants and inorganic anions, Appl. Surf. Sci. 480 (2019) 697–708.

DOI: 10.1016/j.apsusc.2019.03.027

Google Scholar

[18] A. León, P. Reuquen, C. Garín , R. Segura , P. Vargas, P. Zapata and P. A. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol," Appl. Sci. 7-1 (2017) 1–9.

DOI: 10.3390/app7010049

Google Scholar

[19] S. Gunasekaran and G. Anbalagan, Spectroscopic study of phase transitions in natural calcite mineral, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 69-4 (2008) 1246–1251.

DOI: 10.1016/j.saa.2007.06.036

Google Scholar

[20] C. E. Fischer, J. Mink, L. Hajba, Z. Bacsik, C. Németh, J. Mihály, A. Raith, M. Cokoja, F. E. Kühn, Vibrational spectroscopic study of SiO2 -based nanotubes, Vib. Spectrosc. 66 (2013) 104–118.

DOI: 10.1016/j.vibspec.2013.01.012

Google Scholar

[21] K. H. Kim, D. J. Lee, K. M. Cho, S. J. Kim, J. K. Park, and H. T. Jung, Complete magnesio thermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep. 5 (2015) 1–7.

DOI: 10.1038/srep09014

Google Scholar

[22] K. S. Saranya, V. V. T. Padil, C. Senan, R. Pilankatta, K. Saranya, B. George, S. Wacławek and Miroslav ˇCerník, Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: Characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials, 8 (2018) article number 1012.

DOI: 10.3390/nano8121002

Google Scholar

[23] K. Logaranjan, A. J. Raiza, S. C. B. Gopinath, Y. Chen, and K. Pandian, Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity, Nanoscale Res. Lett., 11-1, (2016) Article number 520.

DOI: 10.1186/s11671-016-1725-x

Google Scholar

[24] Y. L. Mikhlin et al., On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy," Appl. Surf. Sci. 427 (2018) 687–694.

DOI: 10.1016/j.apsusc.2017.09.026

Google Scholar

[25] A. Mishra, A. Mehta, S. Kainth, and S. Basu, Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light, Appl. Clay Sci. 153 (2017) 144–153.

DOI: 10.1016/j.clay.2017.11.040

Google Scholar

[26] M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, and C. K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity, Catal. Sci. Technol. 5 (2015) 2522–2531.

DOI: 10.1039/c4cy01545b

Google Scholar

[27] B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application, Nanotechnology. 22 (2011) 2–11.

DOI: 10.1088/0957-4484/22/11/115603

Google Scholar

[28] D. Louise, S. Bonga, M. Manna, F. B. Pinto, M. Fatima, and T. Tayad, Synthesis and Characterization of Silver Nanoparticles Anchored on Montmorillonite via Chemical Reduction, Int. J. Sci. Eng. Res. 7 (2016) 30–37.

DOI: 10.4028/www.scientific.net/nhc.11.30

Google Scholar

[29] A. Gołabiewskaa, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method, Mol. Catal. 442 (2017) 154–163.

DOI: 10.1016/j.mcat.2017.09.004

Google Scholar

[30] C. Wang, K. Yang, X. Wei, S. Ding, F. Tian, and F. Li, One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance, Ceram. Int. 44 (2018) 22481–22488.

DOI: 10.1016/j.ceramint.2018.09.017

Google Scholar

[31] P. Khwanmuang, P. Rotjanapan, A. Phuphuakrat, S. Srichatrapimuk, and C. Chitichotpanya, In vitro assessment of Ag-TiO2/polyurethane nanocomposites for infection control using response surface methodology, React. Funct. Polym. 117 (2017) 120-130.

DOI: 10.1016/j.reactfunctpolym.2017.06.012

Google Scholar

[32] L. Liu, H. Bai, J. Liu, and D. D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation, J. Hazard. Mater. 261 (2013) 214–223.

DOI: 10.1016/j.jhazmat.2013.07.034

Google Scholar

[33] L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, and K. A. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method, Materials (Basel). 10 (2017) article number E402.

DOI: 10.3390/ma10040402

Google Scholar