[1]
L. Joseph, Byung-Moon Jun, Min Jang, C. Min Park, J. C. Muñoz-Senmache, A. J. Hernández-Maldonado, A. Heyden, Miao Yu, Y. Yoon, Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents, Chem. Eng. J. 369 (2019) 928–946.
DOI: 10.1016/j.cej.2019.03.173
Google Scholar
[2]
K. I. Ekpeghere, W. J. Sim, H. J. Lee, and J. E. Oh, Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment, Sci. Total Environ. 640-641 (2018) 1015-1023.
DOI: 10.1016/j.scitotenv.2018.05.218
Google Scholar
[3]
M. K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017) 438–462.
DOI: 10.1016/j.cej.2016.09.029
Google Scholar
[4]
Andrea Pérez-Moreno, Cesar Roberto Sarabia-Castillo, Gabriela Medina-Pérez, Hermes Pérez-Hernández, Jorge Roque De La Puente, Sirenia González-Pozos, Langen Corlay-Chee, Angelina Chamizo-Checa, Rafael G. Campos-Montiel, Fabián Fernández-Luqueño. Nanomaterials modify the growth of crops and some characteristics of organisms from agricultural or forest soils: An experimental study at laboratory, greenhouse and land level. Mexican J. Biotech. 4 (2019) 29-49.
DOI: 10.29267/mxjb.2019.4.4.29
Google Scholar
[5]
S. Yazici Guvenc, B. Alan, E. Adar, and M. S. Bilgili, The impact of nanoparticles on aerobic degradation of municipal solid waste, Waste Manag. Res. 35 (2017) 426–436.
DOI: 10.1177/0734242x17695884
Google Scholar
[6]
J. Pérez-Carvajal, P. Aranda, S. Obregón, G. Colón, and E. Ruiz-Hitzky, TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production, Microporous Mesoporous Mater. 222 (2016) 120–127.
DOI: 10.1016/j.micromeso.2015.10.007
Google Scholar
[7]
H. P. Qi, H. L. Wang, D. Y. Zhao, and W. F. Jiang, Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation, Appl. Surf. Sci. 480 (2018) 105–114.
DOI: 10.1016/j.apsusc.2019.02.194
Google Scholar
[8]
T. S. Wu, K. X. Wang, G. D. Li, S. Y. Sun, J. Sun, and J. S. Chen, Montmorillonite-Supported Ag/TiO2 nanoparticles: An efficient visible-light bacteria photodegradation material, ACS Appl. Mater. Interfaces 2-2 (2010) 544–550.
DOI: 10.1021/am900743d
Google Scholar
[9]
Y. Poo-arporn et al., Photocatalytic oxidation of thiophene over cerium doped TiO2 thin film, Mater. Sci. Semicond. Process. 93 (2018) 21–27.
DOI: 10.1016/j.mssp.2018.12.025
Google Scholar
[10]
I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, Elsevier B.V., (2017).
Google Scholar
[11]
Wayne Institute, Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 2012 Eleventh Edition, vol. 32, no. 1.
Google Scholar
[12]
USEPA, National Primary Drinking Water Regulations Contaminant MCL or TT, 1, (2009) 1-10.
Google Scholar
[13]
S. OPdl. and Paho/WHO, Prueba de Difusión por Disco, chapter 4 PAHO/WHO (2010) 39–52.
Google Scholar
[14]
Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang and Q. Peng, Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment, Nanomaterials, 8-35 (2018) 1-14.
DOI: 10.3390/nano8010035
Google Scholar
[15]
P. Makal and D. Das, Self-doped TiO2 nanowires in TiO2 -B single phase, TiO2 -B/anatase and TiO2 -anatase/rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light, Appl. Surf. Sci. 455 (2018) 1106–1115.
DOI: 10.1016/j.apsusc.2018.06.055
Google Scholar
[16]
X. Yao, X. Liu, and X. Hu, Synthesis of the Ag/AgCl/g-C3N4 composite with high photocatalytic activity under visible light irradiation," ChemCatChem, 6 (2014) 3409–3418.
DOI: 10.1002/cctc.201402487
Google Scholar
[17]
R. Saleh, A. Taufik, and S. P. Prakoso, Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants: Influence of oxidants and inorganic anions, Appl. Surf. Sci. 480 (2019) 697–708.
DOI: 10.1016/j.apsusc.2019.03.027
Google Scholar
[18]
A. León, P. Reuquen, C. Garín , R. Segura , P. Vargas, P. Zapata and P. A. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol," Appl. Sci. 7-1 (2017) 1–9.
DOI: 10.3390/app7010049
Google Scholar
[19]
S. Gunasekaran and G. Anbalagan, Spectroscopic study of phase transitions in natural calcite mineral, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 69-4 (2008) 1246–1251.
DOI: 10.1016/j.saa.2007.06.036
Google Scholar
[20]
C. E. Fischer, J. Mink, L. Hajba, Z. Bacsik, C. Németh, J. Mihály, A. Raith, M. Cokoja, F. E. Kühn, Vibrational spectroscopic study of SiO2 -based nanotubes, Vib. Spectrosc. 66 (2013) 104–118.
DOI: 10.1016/j.vibspec.2013.01.012
Google Scholar
[21]
K. H. Kim, D. J. Lee, K. M. Cho, S. J. Kim, J. K. Park, and H. T. Jung, Complete magnesio thermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep. 5 (2015) 1–7.
DOI: 10.1038/srep09014
Google Scholar
[22]
K. S. Saranya, V. V. T. Padil, C. Senan, R. Pilankatta, K. Saranya, B. George, S. Wacławek and Miroslav ˇCerník, Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: Characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials, 8 (2018) article number 1012.
DOI: 10.3390/nano8121002
Google Scholar
[23]
K. Logaranjan, A. J. Raiza, S. C. B. Gopinath, Y. Chen, and K. Pandian, Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity, Nanoscale Res. Lett., 11-1, (2016) Article number 520.
DOI: 10.1186/s11671-016-1725-x
Google Scholar
[24]
Y. L. Mikhlin et al., On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy," Appl. Surf. Sci. 427 (2018) 687–694.
DOI: 10.1016/j.apsusc.2017.09.026
Google Scholar
[25]
A. Mishra, A. Mehta, S. Kainth, and S. Basu, Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light, Appl. Clay Sci. 153 (2017) 144–153.
DOI: 10.1016/j.clay.2017.11.040
Google Scholar
[26]
M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, and C. K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity, Catal. Sci. Technol. 5 (2015) 2522–2531.
DOI: 10.1039/c4cy01545b
Google Scholar
[27]
B. Yu, K. M. Leung, Q. Guo, W. M. Lau, and J. Yang, Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application, Nanotechnology. 22 (2011) 2–11.
DOI: 10.1088/0957-4484/22/11/115603
Google Scholar
[28]
D. Louise, S. Bonga, M. Manna, F. B. Pinto, M. Fatima, and T. Tayad, Synthesis and Characterization of Silver Nanoparticles Anchored on Montmorillonite via Chemical Reduction, Int. J. Sci. Eng. Res. 7 (2016) 30–37.
DOI: 10.4028/www.scientific.net/nhc.11.30
Google Scholar
[29]
A. Gołabiewskaa, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method, Mol. Catal. 442 (2017) 154–163.
DOI: 10.1016/j.mcat.2017.09.004
Google Scholar
[30]
C. Wang, K. Yang, X. Wei, S. Ding, F. Tian, and F. Li, One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance, Ceram. Int. 44 (2018) 22481–22488.
DOI: 10.1016/j.ceramint.2018.09.017
Google Scholar
[31]
P. Khwanmuang, P. Rotjanapan, A. Phuphuakrat, S. Srichatrapimuk, and C. Chitichotpanya, In vitro assessment of Ag-TiO2/polyurethane nanocomposites for infection control using response surface methodology, React. Funct. Polym. 117 (2017) 120-130.
DOI: 10.1016/j.reactfunctpolym.2017.06.012
Google Scholar
[32]
L. Liu, H. Bai, J. Liu, and D. D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation, J. Hazard. Mater. 261 (2013) 214–223.
DOI: 10.1016/j.jhazmat.2013.07.034
Google Scholar
[33]
L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, and K. A. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method, Materials (Basel). 10 (2017) article number E402.
DOI: 10.3390/ma10040402
Google Scholar