Forced Axial Vibration of a Single-Walled Carbon Nanotube Embedded in Elastic Medium under Various Moving Forces

Article Preview

Abstract:

The dynamic free and forced axial vibrations subjected to moving exponential and harmonic axial forces of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium, are studied in this paper. Two different boundary conditions of SWCNT, including clamped-clamped and clamped-free, are taken into account. Eringen’s nonlocal elasticity theory is used to show the nonlocality for the model. The constitutive equations and their boundary conditions are derived by Hamilton’s principle. Employing the general solution, the derived equations are analytically solved to obtain two items. Firstly, the axial natural frequencies, secondly, the time-domain axial displacements at the middle of the carbon nanotube (CNT), and then the maximum axial displacements. The responses are validated with previous works, and the results demonstrates good agreement to them to verify the influence of the nonlocal parameter on the nondimensional natural frequencies for three various mode numbers. In the time-domain section, the effects of the nonlocal parameter, length, nondimensional stiffness of the elastic medium, and velocity of the moving load on the axial displacement are investigated. Also, the influences of the excitation frequency to natural frequency for the harmonic moving load, as well as the time constant for the exponential moving load on the axial displacement, are illustrated. Finally, the effect of the nonlocal parameter on the maximum axial deflection versus velocity parameter is schematically indicated.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Jha, A. R. (2008). MEMS and nanotechnology-based sensors and devices for communications, medical and aerospace applications: CRC Press.

Google Scholar

[2] El-Sagheer, A. H., & Brown, T. Click nucleic acid ligation: applications in biology and nanotechnology. Accounts of chemical research, 45 (2012), 1258-1267.

DOI: 10.1021/ar200321n

Google Scholar

[3] Wilkinson, J. Nanotechnology applications in medicine. Medical device technology, 14 (2003), 29-31.

Google Scholar

[4] Brown, P., & Stevens, K. (2007). Nanofibers and nanotechnology in textiles: Elsevier.

Google Scholar

[5] Dai, H. Carbon nanotubes: opportunities and challenges. Surface Science, 500 (2002), 218-241.

Google Scholar

[6] Aagesen, M., Johnson, E., Sørensen, C. B., et al. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nature nanotechnology, 2 (2007), 761.

DOI: 10.1038/nnano.2007.378

Google Scholar

[7] Chang, D. W., Jeon, I.-Y., Choi, H.-J., & Baek, J.-B. (2013). Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction Physical and Chemical Properties of Carbon Nanotubes: IntechOpen.

DOI: 10.5772/50805

Google Scholar

[8] Tasis, D., Tagmatarchis, N., Bianco, A., & Prato, M. Chemistry of carbon nanotubes. Chemical reviews, 106 (2006), 1105-1136.

DOI: 10.1021/cr050569o

Google Scholar

[9] Madani, S. Y., Mandel, A., & Seifalian, A. M. A concise review of carbon nanotube's toxicology. Nano reviews, 4 (2013), 21521.

DOI: 10.3402/nano.v4i0.21521

Google Scholar

[10] He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013 (2013).

DOI: 10.1155/2013/578290

Google Scholar

[11] Sinha, N., & Yeow, J.-W. Carbon nanotubes for biomedical applications. IEEE transactions on nanobioscience, 4 (2005), 180-195.

DOI: 10.1109/tnb.2005.850478

Google Scholar

[12] Herrera-Herrera, A. V., González-Curbelo, M. Á., Hernández-Borges, J., & Rodríguez-Delgado, M. Á. Carbon nanotubes applications in separation science: a review. Analytica Chimica Acta, 734 (2012), 1-30.

DOI: 10.1016/j.aca.2012.04.035

Google Scholar

[13] Iijima, S. Helical microtubules of graphitic carbon. nature, 354 (1991), 56.

Google Scholar

[14] Iijima, S., & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. nature, 363 (1993), 603.

DOI: 10.1038/363603a0

Google Scholar

[15] Benning, P., Poirier, D., Ohno, T., et al. C 60 and C 70 fullerenes and potassium fullerides. Physical review B, 45 (1992), 6899.

Google Scholar

[16] Salvetat, J.-P., Bonard, J.-M., Thomson, N., et al. Mechanical properties of carbon nanotubes. Applied Physics A, 69 (1999), 255-260.

Google Scholar

[17] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 35 (2010), 357-401.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[18] Sandler, J., Shaffer, M., Prasse, T., Bauhofer, W., Schulte, K., & Windle, A. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 40 (1999), 5967-5971.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[19] Murmu, T., & Pradhan, S. Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Computational Materials Science, 46 (2009), 854-859.

DOI: 10.1016/j.commatsci.2009.04.019

Google Scholar

[20] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54 (1983), 4703-4710.

DOI: 10.1063/1.332803

Google Scholar

[21] Eringen, A. C. Plane waves in nonlocal micropolar elasticity. International Journal of Engineering Science, 22 (1984), 1113-1121.

DOI: 10.1016/0020-7225(84)90112-5

Google Scholar

[22] Eringen, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10 (1972), 1-16.

DOI: 10.1016/0020-7225(72)90070-5

Google Scholar

[23] Eringen, A. C., & Edelen, D. On nonlocal elasticity. International Journal of Engineering Science, 10 (1972), 233-248.

DOI: 10.1016/0020-7225(72)90039-0

Google Scholar

[24] Hosseini, S. A., Khosravi, F., & Ghadiri, M. Effect of External Moving Torque on Dynamic Stability of Carbon Nanotube. Journal of Nano Research, 61 (2020), 118-135.

DOI: 10.4028/www.scientific.net/jnanor.61.118

Google Scholar

[25] Hosseini, S. A., & Khosravi, F. Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings. Advances in nano research, 8 (2020), 25.

Google Scholar

[26] Khosravi, F., Hosseini, S. A., & Norouzi, H. Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2020), 0954406220903341.

DOI: 10.1177/0954406220903341

Google Scholar

[27] Bastanfar, M., Hosseini, S. A., Sourki, R., & Khosravi, F. Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response. Archive of Mechanical Engineering (2019), 417-437.

Google Scholar

[28] Khosravi, F., & Hosseini, S. A. On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model. Mechanics Based Design of Structures and Machines (2020), 1-24.

DOI: 10.1080/15397734.2020.1744001

Google Scholar

[29] Khosravi, F., Hosseini, S. A., & Hamidi, B. A. On torsional vibrations of triangular nanowire. Thin-Walled Structures, 148 (2020), 106591.

DOI: 10.1016/j.tws.2019.106591

Google Scholar

[30] Khosravi, F., Hosseini, S. A., & Tounsi, A. Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model. The European Physical Journal Plus, 135 (2020), 183.

DOI: 10.1140/epjp/s13360-020-00207-z

Google Scholar

[31] Khosravi, F., Hosseini, S. A., & Hamidi, B. A. Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section. The European Physical Journal Plus, 135 (2020), 318.

DOI: 10.1140/epjp/s13360-020-00312-z

Google Scholar

[32] Hamidi, B. A., Hosseini, S. A., Hassannejad, R., & Khosravi, F. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses (2019), 1-18.

DOI: 10.1080/01495739.2019.1666694

Google Scholar

[33] Hamidi, B. A., Hosseini, S. A., Hassannejad, R., & Khosravi, F. Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. The European Physical Journal Plus, 135 (2020), 35.

DOI: 10.1140/epjp/s13360-019-00037-8

Google Scholar

[34] Ke, L., Xiang, Y., Yang, J., & Kitipornchai, S. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science, 47 (2009), 409-417.

DOI: 10.1016/j.commatsci.2009.09.002

Google Scholar

[35] Janghorban, M., & Zare, A. Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method. Physica E: Low-dimensional Systems and Nanostructures, 43 (2011), 1602-1604.

DOI: 10.1016/j.physe.2011.05.002

Google Scholar

[36] Kiani, K. Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. Journal of Sound and Vibration, 330 (2011), 4896-4914.

DOI: 10.1016/j.jsv.2011.03.033

Google Scholar

[37] Şimşek, M. Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43 (2010), 182-191.

DOI: 10.1016/j.physe.2010.07.003

Google Scholar

[38] Ansari, R., & Ajori, S. Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes. Physics Letters A, 378 (2014), 2876-2880.

DOI: 10.1016/j.physleta.2014.08.006

Google Scholar

[39] Kiani, K. Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 42 (2010), 2391-2401.

DOI: 10.1016/j.physe.2010.05.021

Google Scholar

[40] Soltani, P., Taherian, M., & Farshidianfar, A. Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. Journal of Physics D: Applied Physics, 43 (2010), 425401.

DOI: 10.1088/0022-3727/43/42/425401

Google Scholar

[41] Ke, L.-L., & Wang, Y.-S. Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials and Structures, 21 (2012), 025018.

DOI: 10.1088/0964-1726/21/2/025018

Google Scholar

[42] Gheshlaghi, B., & Hasheminejad, S. M. Surface effects on nonlinear free vibration of nanobeams. Composites Part B: Engineering, 42 (2011), 934-937.

DOI: 10.1016/j.compositesb.2010.12.026

Google Scholar

[43] Ghadiri, M., Hosseini, S., Karami, M., & Namvar, M. In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity. Journal of Solid Mechanics Vol, 10 (2018), 285-299.

Google Scholar

[44] Mohammadi, M., Ghayour, M., & Farajpour, A. Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Composites Part B: Engineering, 45 (2013), 32-42.

DOI: 10.1016/j.compositesb.2012.09.011

Google Scholar

[45] Ansari, R., Arash, B., & Rouhi, H. Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Composite Structures, 93 (2011), 2419-2429.

DOI: 10.1016/j.compstruct.2011.04.006

Google Scholar

[46] Hajnayeb, A., & Khadem, S. Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. Journal of Sound and Vibration, 331 (2012), 2443-2456.

DOI: 10.1016/j.jsv.2012.01.008

Google Scholar

[47] Şimşek, M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Computational Materials Science, 50 (2011), 2112-2123.

DOI: 10.1016/j.commatsci.2011.02.017

Google Scholar

[48] Aydogdu, M. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications, 43 (2012), 34-40.

DOI: 10.1016/j.mechrescom.2012.02.001

Google Scholar

[49] Fernandes, R., El-Borgi, S., Mousavi, S., Reddy, J., & Mechmoum, A. Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Physica E: Low-dimensional Systems and Nanostructures, 88 (2017), 18-25.

DOI: 10.1016/j.physe.2016.11.007

Google Scholar

[50] Heshmati, M., & Yas, M. Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads. Materials & design, 49 (2013), 894-904.

DOI: 10.1016/j.matdes.2013.01.073

Google Scholar

[51] Alimirzaei, S., Mohammadimehr, M., & Tounsi, A. Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering and Mechanics, 71 (2019), 485-502.

DOI: 10.12989/sem.2016.59.3.431

Google Scholar

[52] Darvishvand, A., & Zajkani, A. Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity. Structural Engineering and Mechanics, 71 (2019), 223-232.

DOI: 10.1016/j.euromechsol.2019.04.012

Google Scholar

[53] Chaabane, L. A., Bourada, F., Sekkal, M., et al. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71 (2019), 185-196.

Google Scholar

[54] Hamed, M. A., Sadoun, A. M., & Eltaher, M. A. Effects of porosity models on static behavior of size dependent functionally graded beam. Structural Engineering and Mechanics, 71 (2019), 89-98.

Google Scholar

[55] Gao, Y., Xiao, W., & Zhu, H. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method. Struct. Eng. Mech, 69 (2019), 205-219.

DOI: 10.1140/epjp/i2019-12446-0

Google Scholar

[56] Aydogdu, M., Arda, M., & Filiz, S. Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter. Advances in nano research, 6 (2018), 257.

Google Scholar

[57] Arda, M., & Aydogdu, M. Longitudinal vibration of CNTs viscously damped in span. International Journal of Engineering and Applied Sciences, 9 (2017), 22-38.

DOI: 10.24107/ijeas.305348

Google Scholar

[58] Aydogdu, M., & Arda, M. [Forced vibration of nanorods using nonlocal elasticity]. 4 (2016).

Google Scholar

[59] Hosseini, S. A., Khosravi, F., & Ghadiri, M. Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory. Journal of Vibration and Control (2019), 1077546319890170.

DOI: 10.1177/1077546319890170

Google Scholar

[60] Khosravi, F., Hosseini, S. A., & Hayati, H. Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory. International Journal of Modern Physics B (2020), 2050067.

DOI: 10.1142/s0217979220500678

Google Scholar

[61] Giannopoulos, G., Kakavas, P., & Anifantis, N. Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science, 41 (2008), 561-569.

DOI: 10.1016/j.commatsci.2007.05.016

Google Scholar

[62] Chowdhury, R., Adhikari, S., & Mitchell, J. Vibrating carbon nanotube based bio-sensors. Physica E: Low-dimensional Systems and Nanostructures, 42 (2009), 104-109.

DOI: 10.1016/j.physe.2009.09.007

Google Scholar

[63] Georgantzinos, S., & Anifantis, N. Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica E: Low-dimensional Systems and Nanostructures, 42 (2010), 1795-1801.

DOI: 10.1016/j.physe.2010.02.002

Google Scholar