[1]
Jha, A. R. (2008). MEMS and nanotechnology-based sensors and devices for communications, medical and aerospace applications: CRC Press.
Google Scholar
[2]
El-Sagheer, A. H., & Brown, T. Click nucleic acid ligation: applications in biology and nanotechnology. Accounts of chemical research, 45 (2012), 1258-1267.
DOI: 10.1021/ar200321n
Google Scholar
[3]
Wilkinson, J. Nanotechnology applications in medicine. Medical device technology, 14 (2003), 29-31.
Google Scholar
[4]
Brown, P., & Stevens, K. (2007). Nanofibers and nanotechnology in textiles: Elsevier.
Google Scholar
[5]
Dai, H. Carbon nanotubes: opportunities and challenges. Surface Science, 500 (2002), 218-241.
Google Scholar
[6]
Aagesen, M., Johnson, E., Sørensen, C. B., et al. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nature nanotechnology, 2 (2007), 761.
DOI: 10.1038/nnano.2007.378
Google Scholar
[7]
Chang, D. W., Jeon, I.-Y., Choi, H.-J., & Baek, J.-B. (2013). Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction Physical and Chemical Properties of Carbon Nanotubes: IntechOpen.
DOI: 10.5772/50805
Google Scholar
[8]
Tasis, D., Tagmatarchis, N., Bianco, A., & Prato, M. Chemistry of carbon nanotubes. Chemical reviews, 106 (2006), 1105-1136.
DOI: 10.1021/cr050569o
Google Scholar
[9]
Madani, S. Y., Mandel, A., & Seifalian, A. M. A concise review of carbon nanotube's toxicology. Nano reviews, 4 (2013), 21521.
DOI: 10.3402/nano.v4i0.21521
Google Scholar
[10]
He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013 (2013).
DOI: 10.1155/2013/578290
Google Scholar
[11]
Sinha, N., & Yeow, J.-W. Carbon nanotubes for biomedical applications. IEEE transactions on nanobioscience, 4 (2005), 180-195.
DOI: 10.1109/tnb.2005.850478
Google Scholar
[12]
Herrera-Herrera, A. V., González-Curbelo, M. Á., Hernández-Borges, J., & Rodríguez-Delgado, M. Á. Carbon nanotubes applications in separation science: a review. Analytica Chimica Acta, 734 (2012), 1-30.
DOI: 10.1016/j.aca.2012.04.035
Google Scholar
[13]
Iijima, S. Helical microtubules of graphitic carbon. nature, 354 (1991), 56.
Google Scholar
[14]
Iijima, S., & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. nature, 363 (1993), 603.
DOI: 10.1038/363603a0
Google Scholar
[15]
Benning, P., Poirier, D., Ohno, T., et al. C 60 and C 70 fullerenes and potassium fullerides. Physical review B, 45 (1992), 6899.
Google Scholar
[16]
Salvetat, J.-P., Bonard, J.-M., Thomson, N., et al. Mechanical properties of carbon nanotubes. Applied Physics A, 69 (1999), 255-260.
Google Scholar
[17]
Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 35 (2010), 357-401.
DOI: 10.1016/j.progpolymsci.2009.09.003
Google Scholar
[18]
Sandler, J., Shaffer, M., Prasse, T., Bauhofer, W., Schulte, K., & Windle, A. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 40 (1999), 5967-5971.
DOI: 10.1016/s0032-3861(99)00166-4
Google Scholar
[19]
Murmu, T., & Pradhan, S. Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Computational Materials Science, 46 (2009), 854-859.
DOI: 10.1016/j.commatsci.2009.04.019
Google Scholar
[20]
Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54 (1983), 4703-4710.
DOI: 10.1063/1.332803
Google Scholar
[21]
Eringen, A. C. Plane waves in nonlocal micropolar elasticity. International Journal of Engineering Science, 22 (1984), 1113-1121.
DOI: 10.1016/0020-7225(84)90112-5
Google Scholar
[22]
Eringen, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10 (1972), 1-16.
DOI: 10.1016/0020-7225(72)90070-5
Google Scholar
[23]
Eringen, A. C., & Edelen, D. On nonlocal elasticity. International Journal of Engineering Science, 10 (1972), 233-248.
DOI: 10.1016/0020-7225(72)90039-0
Google Scholar
[24]
Hosseini, S. A., Khosravi, F., & Ghadiri, M. Effect of External Moving Torque on Dynamic Stability of Carbon Nanotube. Journal of Nano Research, 61 (2020), 118-135.
DOI: 10.4028/www.scientific.net/jnanor.61.118
Google Scholar
[25]
Hosseini, S. A., & Khosravi, F. Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings. Advances in nano research, 8 (2020), 25.
Google Scholar
[26]
Khosravi, F., Hosseini, S. A., & Norouzi, H. Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2020), 0954406220903341.
DOI: 10.1177/0954406220903341
Google Scholar
[27]
Bastanfar, M., Hosseini, S. A., Sourki, R., & Khosravi, F. Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response. Archive of Mechanical Engineering (2019), 417-437.
Google Scholar
[28]
Khosravi, F., & Hosseini, S. A. On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model. Mechanics Based Design of Structures and Machines (2020), 1-24.
DOI: 10.1080/15397734.2020.1744001
Google Scholar
[29]
Khosravi, F., Hosseini, S. A., & Hamidi, B. A. On torsional vibrations of triangular nanowire. Thin-Walled Structures, 148 (2020), 106591.
DOI: 10.1016/j.tws.2019.106591
Google Scholar
[30]
Khosravi, F., Hosseini, S. A., & Tounsi, A. Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model. The European Physical Journal Plus, 135 (2020), 183.
DOI: 10.1140/epjp/s13360-020-00207-z
Google Scholar
[31]
Khosravi, F., Hosseini, S. A., & Hamidi, B. A. Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section. The European Physical Journal Plus, 135 (2020), 318.
DOI: 10.1140/epjp/s13360-020-00312-z
Google Scholar
[32]
Hamidi, B. A., Hosseini, S. A., Hassannejad, R., & Khosravi, F. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses (2019), 1-18.
DOI: 10.1080/01495739.2019.1666694
Google Scholar
[33]
Hamidi, B. A., Hosseini, S. A., Hassannejad, R., & Khosravi, F. Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. The European Physical Journal Plus, 135 (2020), 35.
DOI: 10.1140/epjp/s13360-019-00037-8
Google Scholar
[34]
Ke, L., Xiang, Y., Yang, J., & Kitipornchai, S. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science, 47 (2009), 409-417.
DOI: 10.1016/j.commatsci.2009.09.002
Google Scholar
[35]
Janghorban, M., & Zare, A. Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method. Physica E: Low-dimensional Systems and Nanostructures, 43 (2011), 1602-1604.
DOI: 10.1016/j.physe.2011.05.002
Google Scholar
[36]
Kiani, K. Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. Journal of Sound and Vibration, 330 (2011), 4896-4914.
DOI: 10.1016/j.jsv.2011.03.033
Google Scholar
[37]
Şimşek, M. Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43 (2010), 182-191.
DOI: 10.1016/j.physe.2010.07.003
Google Scholar
[38]
Ansari, R., & Ajori, S. Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes. Physics Letters A, 378 (2014), 2876-2880.
DOI: 10.1016/j.physleta.2014.08.006
Google Scholar
[39]
Kiani, K. Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 42 (2010), 2391-2401.
DOI: 10.1016/j.physe.2010.05.021
Google Scholar
[40]
Soltani, P., Taherian, M., & Farshidianfar, A. Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. Journal of Physics D: Applied Physics, 43 (2010), 425401.
DOI: 10.1088/0022-3727/43/42/425401
Google Scholar
[41]
Ke, L.-L., & Wang, Y.-S. Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials and Structures, 21 (2012), 025018.
DOI: 10.1088/0964-1726/21/2/025018
Google Scholar
[42]
Gheshlaghi, B., & Hasheminejad, S. M. Surface effects on nonlinear free vibration of nanobeams. Composites Part B: Engineering, 42 (2011), 934-937.
DOI: 10.1016/j.compositesb.2010.12.026
Google Scholar
[43]
Ghadiri, M., Hosseini, S., Karami, M., & Namvar, M. In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity. Journal of Solid Mechanics Vol, 10 (2018), 285-299.
Google Scholar
[44]
Mohammadi, M., Ghayour, M., & Farajpour, A. Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Composites Part B: Engineering, 45 (2013), 32-42.
DOI: 10.1016/j.compositesb.2012.09.011
Google Scholar
[45]
Ansari, R., Arash, B., & Rouhi, H. Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Composite Structures, 93 (2011), 2419-2429.
DOI: 10.1016/j.compstruct.2011.04.006
Google Scholar
[46]
Hajnayeb, A., & Khadem, S. Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. Journal of Sound and Vibration, 331 (2012), 2443-2456.
DOI: 10.1016/j.jsv.2012.01.008
Google Scholar
[47]
Şimşek, M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Computational Materials Science, 50 (2011), 2112-2123.
DOI: 10.1016/j.commatsci.2011.02.017
Google Scholar
[48]
Aydogdu, M. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications, 43 (2012), 34-40.
DOI: 10.1016/j.mechrescom.2012.02.001
Google Scholar
[49]
Fernandes, R., El-Borgi, S., Mousavi, S., Reddy, J., & Mechmoum, A. Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Physica E: Low-dimensional Systems and Nanostructures, 88 (2017), 18-25.
DOI: 10.1016/j.physe.2016.11.007
Google Scholar
[50]
Heshmati, M., & Yas, M. Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads. Materials & design, 49 (2013), 894-904.
DOI: 10.1016/j.matdes.2013.01.073
Google Scholar
[51]
Alimirzaei, S., Mohammadimehr, M., & Tounsi, A. Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering and Mechanics, 71 (2019), 485-502.
DOI: 10.12989/sem.2016.59.3.431
Google Scholar
[52]
Darvishvand, A., & Zajkani, A. Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity. Structural Engineering and Mechanics, 71 (2019), 223-232.
DOI: 10.1016/j.euromechsol.2019.04.012
Google Scholar
[53]
Chaabane, L. A., Bourada, F., Sekkal, M., et al. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71 (2019), 185-196.
Google Scholar
[54]
Hamed, M. A., Sadoun, A. M., & Eltaher, M. A. Effects of porosity models on static behavior of size dependent functionally graded beam. Structural Engineering and Mechanics, 71 (2019), 89-98.
Google Scholar
[55]
Gao, Y., Xiao, W., & Zhu, H. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method. Struct. Eng. Mech, 69 (2019), 205-219.
DOI: 10.1140/epjp/i2019-12446-0
Google Scholar
[56]
Aydogdu, M., Arda, M., & Filiz, S. Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter. Advances in nano research, 6 (2018), 257.
Google Scholar
[57]
Arda, M., & Aydogdu, M. Longitudinal vibration of CNTs viscously damped in span. International Journal of Engineering and Applied Sciences, 9 (2017), 22-38.
DOI: 10.24107/ijeas.305348
Google Scholar
[58]
Aydogdu, M., & Arda, M. [Forced vibration of nanorods using nonlocal elasticity]. 4 (2016).
Google Scholar
[59]
Hosseini, S. A., Khosravi, F., & Ghadiri, M. Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory. Journal of Vibration and Control (2019), 1077546319890170.
DOI: 10.1177/1077546319890170
Google Scholar
[60]
Khosravi, F., Hosseini, S. A., & Hayati, H. Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory. International Journal of Modern Physics B (2020), 2050067.
DOI: 10.1142/s0217979220500678
Google Scholar
[61]
Giannopoulos, G., Kakavas, P., & Anifantis, N. Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science, 41 (2008), 561-569.
DOI: 10.1016/j.commatsci.2007.05.016
Google Scholar
[62]
Chowdhury, R., Adhikari, S., & Mitchell, J. Vibrating carbon nanotube based bio-sensors. Physica E: Low-dimensional Systems and Nanostructures, 42 (2009), 104-109.
DOI: 10.1016/j.physe.2009.09.007
Google Scholar
[63]
Georgantzinos, S., & Anifantis, N. Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica E: Low-dimensional Systems and Nanostructures, 42 (2010), 1795-1801.
DOI: 10.1016/j.physe.2010.02.002
Google Scholar