Effect of Gate Engineering and Channel Length Variation in Surrounding Gate MOSFETs

Article Preview

Abstract:

In this paper, the digital and analog performance for Double Material Gate Surrounding Gate Metal Oxide Semiconductor Field Effect Transistor (DM SG MOSFET) has been analyzed. A detailed study of DM SG MOSFET is performed for different channel length ratio's. The comparison analysis on surface potential, electric field, transfer characteristics, output characteristics, transconductance and output conductance is carried with respect to the silicon dioxide and hafnium dioxide based device. It has been found from the simulation results that HfO2 dielectric used DM SG TFET provides better performance than SiO2 dielectric used DM SG TFET. Also it has been observed from the presented results that the transconductance is 45.32 at 1:3 channel length ratio for DG SG MOSFET.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-143

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Yu, W.Y. Lu, H. Lu, Y. Taur, Explicit continuous models for double-gate and surrounding gate MOSFETs,, IEEE Trans. Electron Devices 54 (2007) 492–496.

DOI: 10.1109/ted.2007.904410

Google Scholar

[2] Jae Young Song, Woo Young Choi, Ju Hee Park, Jong Duk Lee, and Byung-Gook Park, Design Optimization of Gate-All-Around (GAA) MOSFETs,, IEEE Transactions On Nanotechnology, 5(3),(2006).

DOI: 10.1109/tnano.2006.869952

Google Scholar

[3] P. Vimala, N. B. Balamurugan, Quantum mechanical compact modeling of symmetric double-gate MOSFETs using variational approach,, 2012 Chinese Institute of Electronics, Journal of Semiconductors, Volume 33, 3, (2012).

DOI: 10.1088/1674-4926/33/3/034001

Google Scholar

[4] B. Cheng,A. R. Brown,S. Roy,A. Asenov , PBTI/NBTI-Related Variability in TB-SOI and DG MOSFETs,, IEEE Electron Device Letters, Volume: 31 , Issue: 5 ,Pages: 408 – 410, (2010).

DOI: 10.1109/led.2010.2043812

Google Scholar

[5] P. Vimala, N.B. Balamurungan, New Analytical Model for Nanoscale Tri-Gate SOI MOSFETs Including Quantum Effects,, IEEE Journal of the Electron Devices Society, Vol. 02-(01), (2014).

DOI: 10.1109/jeds.2014.2298915

Google Scholar

[6] G.X. Hu, L.L. Wang, R. Liu, T.A. Tang, Quantum mechanical study on surrounding gate metal-oxide semiconductor field-effect transistors,, Commun. Theory. Phys. 54(2010) 763–767.

DOI: 10.1088/0253-6102/54/4/33

Google Scholar

[7] P. Vimala, N.B. Balamurungan, Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects,, Journal of Semiconductors, 34 (2013) 114001–1/5.

DOI: 10.1088/1674-4926/34/11/114001

Google Scholar

[8] J.P. Duarte, S.J. Choi, D.I. Moon, Y.K. Choi, A non-piecewise model for long-channel junctionless cylindrical nanowire FETs,, IEEE Electron Device Letters. 33 (2012)155–157.

DOI: 10.1109/led.2011.2174770

Google Scholar

[9] W. Xu, H. Wong, K. Kakushima, H. Iwai, Quasi-analytical model of ballistic cylindrical surrounding gate nanowire MOSFET,, Micro electronics Engineering. 138 (2015)111–117.

DOI: 10.1016/j.mee.2015.03.002

Google Scholar

[10] S. K. Sharma, A. Jain, B. Raj, Analysis of triple metal surrounding gate (TM-SG) III–V nanowire MOSFET for photo sensing application,, Opto-Electronics Review, 26 (2018) 141-148.

DOI: 10.1016/j.opelre.2018.03.001

Google Scholar

[11] Arobinda Pal, Angsuman Sarkar, Analytical study of Dual Material Surrounding Gate MOSFETto suppress short-channel effects (SCEs),, Kalyani Government Engineering College, Kalyani, Nadia, India, Engineering Science and Technology, an International Journal 17 (2014) 205-212.

DOI: 10.1016/j.jestch.2014.06.002

Google Scholar

[12] Md. Rokib Hasan, Influence of device performance of Sub-10 nm GaN-based DG-MOSFETs over conventional Si-based SG-MOSFETs,,2017 4th International Conference on Advances in Electrical Engineering (ICAEE), (2017), 697 – 702.

DOI: 10.1109/icaee.2017.8255445

Google Scholar

[13] Jae Young Song,Woo Young Choi,Ju Hee Park,Jong Duk Lee, Byung-Gook Park, Design optimization of gate-all-around (GAA) MOSFETs,, IEEE Transactions on Nanotechnology, 5,(2006), 186 – 191.

DOI: 10.1109/tnano.2006.869952

Google Scholar

[14] K. Rajagopalan,R. Droopad,J. Abrokwah,P. Zurcher,P. Fejes,M. Passlack, 1-μm Enhancement Mode GaAs N-Channel MOSFETs With Transconductance Exceeding 250 mS/mm, ,IEEE Electron Device Letters, 28, (2007), 100 – 102.

DOI: 10.1109/led.2006.889502

Google Scholar

[15] Rajni Gautam,Manoj Saxena,R. S. Gupta, Mridula Gupta, Numerical Model of Gate-All-Around MOSFET With Vacuum Gate Dielectric for Biomolecule Detection, , IEEE Electron Device Letters, 33(12), (2012) 1756 – 1758.

DOI: 10.1109/led.2012.2216247

Google Scholar

[16] S.S. Mohanty, S.Mishra, M.Singh, P.Nanda, G.P. Mishra, Effect of Delta Doping on the RF Performance of Nano-scale Dual Material MOSFET,, Procedia Computer Science, 57, (2015) 282-287.

DOI: 10.1016/j.procs.2015.07.485

Google Scholar

[17] Silvaco ATLAS: Device simulation software. Silvaco Int, Santa Clara (2012).

Google Scholar