[1]
B. Yu, W.Y. Lu, H. Lu, Y. Taur, Explicit continuous models for double-gate and surrounding gate MOSFETs,, IEEE Trans. Electron Devices 54 (2007) 492–496.
DOI: 10.1109/ted.2007.904410
Google Scholar
[2]
Jae Young Song, Woo Young Choi, Ju Hee Park, Jong Duk Lee, and Byung-Gook Park, Design Optimization of Gate-All-Around (GAA) MOSFETs,, IEEE Transactions On Nanotechnology, 5(3),(2006).
DOI: 10.1109/tnano.2006.869952
Google Scholar
[3]
P. Vimala, N. B. Balamurugan, Quantum mechanical compact modeling of symmetric double-gate MOSFETs using variational approach,, 2012 Chinese Institute of Electronics, Journal of Semiconductors, Volume 33, 3, (2012).
DOI: 10.1088/1674-4926/33/3/034001
Google Scholar
[4]
B. Cheng,A. R. Brown,S. Roy,A. Asenov , PBTI/NBTI-Related Variability in TB-SOI and DG MOSFETs,, IEEE Electron Device Letters, Volume: 31 , Issue: 5 ,Pages: 408 – 410, (2010).
DOI: 10.1109/led.2010.2043812
Google Scholar
[5]
P. Vimala, N.B. Balamurungan, New Analytical Model for Nanoscale Tri-Gate SOI MOSFETs Including Quantum Effects,, IEEE Journal of the Electron Devices Society, Vol. 02-(01), (2014).
DOI: 10.1109/jeds.2014.2298915
Google Scholar
[6]
G.X. Hu, L.L. Wang, R. Liu, T.A. Tang, Quantum mechanical study on surrounding gate metal-oxide semiconductor field-effect transistors,, Commun. Theory. Phys. 54(2010) 763–767.
DOI: 10.1088/0253-6102/54/4/33
Google Scholar
[7]
P. Vimala, N.B. Balamurungan, Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects,, Journal of Semiconductors, 34 (2013) 114001–1/5.
DOI: 10.1088/1674-4926/34/11/114001
Google Scholar
[8]
J.P. Duarte, S.J. Choi, D.I. Moon, Y.K. Choi, A non-piecewise model for long-channel junctionless cylindrical nanowire FETs,, IEEE Electron Device Letters. 33 (2012)155–157.
DOI: 10.1109/led.2011.2174770
Google Scholar
[9]
W. Xu, H. Wong, K. Kakushima, H. Iwai, Quasi-analytical model of ballistic cylindrical surrounding gate nanowire MOSFET,, Micro electronics Engineering. 138 (2015)111–117.
DOI: 10.1016/j.mee.2015.03.002
Google Scholar
[10]
S. K. Sharma, A. Jain, B. Raj, Analysis of triple metal surrounding gate (TM-SG) III–V nanowire MOSFET for photo sensing application,, Opto-Electronics Review, 26 (2018) 141-148.
DOI: 10.1016/j.opelre.2018.03.001
Google Scholar
[11]
Arobinda Pal, Angsuman Sarkar, Analytical study of Dual Material Surrounding Gate MOSFETto suppress short-channel effects (SCEs),, Kalyani Government Engineering College, Kalyani, Nadia, India, Engineering Science and Technology, an International Journal 17 (2014) 205-212.
DOI: 10.1016/j.jestch.2014.06.002
Google Scholar
[12]
Md. Rokib Hasan, Influence of device performance of Sub-10 nm GaN-based DG-MOSFETs over conventional Si-based SG-MOSFETs,,2017 4th International Conference on Advances in Electrical Engineering (ICAEE), (2017), 697 – 702.
DOI: 10.1109/icaee.2017.8255445
Google Scholar
[13]
Jae Young Song,Woo Young Choi,Ju Hee Park,Jong Duk Lee, Byung-Gook Park, Design optimization of gate-all-around (GAA) MOSFETs,, IEEE Transactions on Nanotechnology, 5,(2006), 186 – 191.
DOI: 10.1109/tnano.2006.869952
Google Scholar
[14]
K. Rajagopalan,R. Droopad,J. Abrokwah,P. Zurcher,P. Fejes,M. Passlack, 1-μm Enhancement Mode GaAs N-Channel MOSFETs With Transconductance Exceeding 250 mS/mm, ,IEEE Electron Device Letters, 28, (2007), 100 – 102.
DOI: 10.1109/led.2006.889502
Google Scholar
[15]
Rajni Gautam,Manoj Saxena,R. S. Gupta, Mridula Gupta, Numerical Model of Gate-All-Around MOSFET With Vacuum Gate Dielectric for Biomolecule Detection, , IEEE Electron Device Letters, 33(12), (2012) 1756 – 1758.
DOI: 10.1109/led.2012.2216247
Google Scholar
[16]
S.S. Mohanty, S.Mishra, M.Singh, P.Nanda, G.P. Mishra, Effect of Delta Doping on the RF Performance of Nano-scale Dual Material MOSFET,, Procedia Computer Science, 57, (2015) 282-287.
DOI: 10.1016/j.procs.2015.07.485
Google Scholar
[17]
Silvaco ATLAS: Device simulation software. Silvaco Int, Santa Clara (2012).
Google Scholar