[1]
C.S. Madankar, A.K. Dalai, S.N. Naik, Green synthesis of biolubricant base stock from canola oil, Ind. Crops Prod. 44 (2013) 139–144. https://doi.org/10.1016/j.indcrop.2012.11.012.
DOI: 10.1016/j.indcrop.2012.11.012
Google Scholar
[2]
D. Rahmadiawan, H. Abral, N. Nasruddin, Z. Fuadi, Stability , Viscosity , and Tribology Properties of Polyol Ester Oil-Based Biolubricant Filled with TEMPO-Oxidized Bacterial Cellulose Nanofiber, 2021 (2021).
DOI: 10.1155/2021/5536047
Google Scholar
[3]
R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renew. Sustain. Energy Rev. 15 (2011) 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.
DOI: 10.1016/j.rser.2011.02.015
Google Scholar
[4]
J. Salimon, N. Salih, Chemical modification of oleic acid oil for biolubricant industrial applications, Aust. J. Basic Appl. Sci. 4 (2010) 1999–(2003).
Google Scholar
[5]
T.M. Panchal, A. Patel, D.D. Chauhan, M. Thomas, J. V. Patel, A methodological review on bio-lubricants from vegetable oil based resources, Renew. Sustain. Energy Rev. 70 (2017) 65–70. https://doi.org/10.1016/j.rser.2016.11.105.
DOI: 10.1016/j.rser.2016.11.105
Google Scholar
[6]
M. Muslim, M. Idrus Alhamid, Nasruddin, R. Dieter, S. M Zaky, E. Marzuki, N. Aisyah, Design of a combination package of heat exchanger and heater for organic rankine cycle power plant, IOP Conf. Ser. Earth Environ. Sci. 105 (2018). https://doi.org/10.1088/1755-1315/105/1/012046.
DOI: 10.1088/1755-1315/105/1/012046
Google Scholar
[7]
R. Senthil, D. Ratchagaraja, R. Silambarasan, R. Manikandan, Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe, Alexandria Eng. J. 55 (2016) 1063–1068. https://doi.org/10.1016/j.aej.2016.03.011.
DOI: 10.1016/j.aej.2016.03.011
Google Scholar
[8]
P. Deivajothi, V. Manieniyan, S. Sivaprakasam, An impact of ethyl esters of groundnut acid oil (vegetable oil refinery waste) used as emerging fuel in DI diesel engine, Alexandria Eng. J. 57 (2018) 2215–2223. https://doi.org/10.1016/j.aej.2017.09.003.
DOI: 10.1016/j.aej.2017.09.003
Google Scholar
[9]
J.F. Hoffmann, G. Vaitilingom, J.F. Henry, M. Chirtoc, R. Olives, V. Goetz, X. Py, Temperature dependence of thermophysical and rheological properties of seven vegetable oils in view of their use as heat transfer fluids in concentrated solar plants, Sol. Energy Mater. Sol. Cells. 178 (2018) 129–138. https://doi.org/10.1016/j.solmat.2017.12.037.
DOI: 10.1016/j.solmat.2017.12.037
Google Scholar
[10]
Y. Krishna, M. Faizal, R. Saidur, K.C. Ng, N. Aslfattahi, State-of-the-art heat transfer fluids for parabolic trough collector, Int. J. Heat Mass Transf. 152 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541.
DOI: 10.1016/j.ijheatmasstransfer.2020.119541
Google Scholar
[11]
F. Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S.M. Yahya, L. Das, Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids, Sol. Energy. 208 (2020) 124–138. https://doi.org/10.1016/j.solener. 2020.07.060.
DOI: 10.1016/j.solener.2020.07.060
Google Scholar
[12]
R. Saidur, K.Y. Leong, H.A. Mohammed, A review on applications and challenges of nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 1646–1668. https://doi.org/10.1016/j.rser. 2010.11.035.
DOI: 10.1016/j.rser.2010.11.035
Google Scholar
[13]
V.A. Bhagwat, C. Pawar, N.R. Banapurmath, Graphene Nanoparticle - Biodiesel Blended Diesel Engine, Int. J. Eng. Res. Technol. 4 (2015) 75–78.
Google Scholar
[14]
S.R. Gunakala, V.M. Job, S. Sakhamuri, P.V.S.N. Murthy, B. V. Chowdary, Numerical study of blood perfusion and nanoparticle transport in prostate and muscle tumours during intravenous magnetic hyperthermia, Alexandria Eng. J. (2020). https://doi.org/10.1016/j.aej. 2020.10.015.
DOI: 10.1016/j.aej.2020.10.015
Google Scholar
[15]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306.
DOI: 10.1002/adma.201102306
Google Scholar
[16]
M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: From fundamentals to applications, Curr. Opin. Solid State Mater. Sci. 23 (2019) 164–178. https://doi.org/10.1016/j.cossms.2019.01.002.
DOI: 10.1016/j.cossms.2019.01.002
Google Scholar
[17]
C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes, J. Phys. Chem. Lett. 6 (2015) 4026–4031. https://doi.org/10.1021/acs.jpclett.5b01895.
DOI: 10.1021/acs.jpclett.5b01895
Google Scholar
[18]
O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum, Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A. 2 (2014) 14334–14338. https://doi.org/10.1039/c4ta02638a.
DOI: 10.1039/c4ta02638a
Google Scholar
[19]
J. Chen, K. Chen, D. Tong, Y. Huang, J. Zhang, J. Xue, Q. Huang, T. Chen, CO2 and temperature dual responsive smart, MXene phases, Chem. Commun. 51 (2015) 314–317. https://doi.org/10.1039/c4cc07220k.
DOI: 10.1039/c4cc07220k
Google Scholar
[20]
S. Aberoumand, A. Jafarimoghaddam, Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid, J. Taiwan Inst. Chem. Eng. 71 (2017) 315–322. https://doi.org/10.1016/j.jtice.2016.12.035.
DOI: 10.1016/j.jtice.2016.12.035
Google Scholar
[21]
S. Aberoumand, A. Jafarimoghaddam, Tungsten (III) oxide (WO3) – Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength, Alexandria Eng. J. 57 (2018) 169–174. https://doi.org/10.1016/j.aej.2016.11.003.
DOI: 10.1016/j.aej.2016.11.003
Google Scholar
[22]
N. Aslfattahi, R. Saidur, A. Arifutzzaman, R. Sadri, N. Bimbo, M.F.M. Sabri, P.A. Maughan, L. Bouscarrat, R.J. Dawson, S.M. Said, B.T. Goh, N.A.C. Sidik, Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites, J. Energy Storage. 27 (2020) 101115. https://doi.org/10.1016/j.est.2019.101115.
DOI: 10.1016/j.est.2019.101115
Google Scholar
[23]
N. Ali, J.A. Teixeira, A. Addali, Aluminium Nanofluids Stability: A Comparison between the Conventional Two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method, J. Nanomater. 2019 (2019). https://doi.org/10.1155/2019/3930572.
DOI: 10.1155/2019/3930572
Google Scholar
[24]
A. Naser, J.A. Teixeira, A. Addali, New pH Correlations for Stainless Steel 316L, Alumina, and Copper(I) Oxide Nanofluids Fabricated at Controlled Sonication Temperatures, J. Nano Res. 58 (2019) 125–138. https://doi.org/10.4028/www.scientific.net/jnanor.58.125.
DOI: 10.4028/www.scientific.net/jnanor.58.125
Google Scholar
[25]
N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater. 2018 (2018). https://doi.org/10.1155/2018/6978130.
DOI: 10.1155/2018/6978130
Google Scholar
[26]
M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, W. Zhiming, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc. 131 (2009) 3611–3620. https://doi.org/10.1021/ja807449u.
DOI: 10.1021/ja807449u
Google Scholar
[27]
Y. Cao, Q. Deng, Z. Liu, D. Shen, T. Wang, Q. Huang, S. Du, N. Jiang, C. Lin, J. Yu, RSC Advances Enhanced thermal properties of poly ( vinylidene fl uoride ) composites with ultrathin nanosheets of, (2017) 20494–20501. https://doi.org/10.1039/c7ra00184c.
DOI: 10.1039/c7ra00184c
Google Scholar
[28]
Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu, A. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene, Mater. Sci. Eng. B. 191 (2015) 33–40. https://doi.org/10.1016/j.mseb.2014.10.009.
DOI: 10.1016/j.mseb.2014.10.009
Google Scholar
[29]
W. Yu, H. Xie, A review on nanofluids: Preparation, stability mechanisms, and applications, J. Nanomater. 2012 (2012). https://doi.org/10.1155/2012/435873.
Google Scholar
[30]
F. Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S.M. Yahya, L. Das, Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids, Sol. Energy. 208 (2020) 124–138. https://doi.org/10.1016/j.solener. 2020.07.060.
DOI: 10.1016/j.solener.2020.07.060
Google Scholar
[31]
A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf. 54 (2011) 4051–4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014.
DOI: 10.1016/j.ijheatmasstransfer.2011.04.014
Google Scholar
[32]
I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transf. 55 (2012) 874–885. https://doi.org/10.1016/j.ijheatmasstransfer. 2011.10.021.
DOI: 10.1016/j.ijheatmasstransfer.2011.10.021
Google Scholar
[33]
A. Asadi, I.M. Alarifi, Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: an experimental study, Sci. Rep. 10 (2020) 1–10. https://doi.org/10.1038/s41598-020-71978-9.
DOI: 10.1038/s41598-020-71978-9
Google Scholar
[34]
L. Yang, W. Ji, M. Mao, J. Huang, Dynamic stability, sedimentation, and time-dependent heat transfer characteristics of TiO2 and CNT nanofluids, J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-09103-w.
DOI: 10.1007/s10973-019-09103-w
Google Scholar
[35]
I. Demiral, A. Eryazici, S. Şensöz, Bio-oil production from pyrolysis of corncob (Zea mays L.), Biomass and Bioenergy. 36 (2012) 43–49. https://doi.org/10.1016/j.biombioe. 2011.10.045.
DOI: 10.1016/j.biombioe.2011.10.045
Google Scholar
[36]
S. Omar, S. Alsamaq, Y. Yang, J. Wang, Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions, Front. Chem. Sci. Eng. (2019). https://doi.org/10.1007/s11705-019-1861-9.
DOI: 10.1007/s11705-019-1861-9
Google Scholar
[37]
M.A. Dubé, S. Zheng, D.D. McLean, M. Kates, A comparison of attenuated total reflectance-FTIR spectroscopy and GPC for monitoring biodiesel production, JAOCS, J. Am. Oil Chem. Soc. 81 (2004) 599–603. https://doi.org/10.1007/s11746-006-0948-x.
DOI: 10.1007/s11746-006-0948-x
Google Scholar
[38]
D. Reyman, A. Saiz Bermejo, I. Ramirez Uceda, M. Rodriguez Gamero, A new FTIR method to monitor transesterification in biodiesel production by ultrasonication, Environ. Chem. Lett. 12 (2014) 235–240. https://doi.org/10.1007/s10311-013-0440-4.
DOI: 10.1007/s10311-013-0440-4
Google Scholar
[39]
N.N. Mahamuni, Y.G. Adewuyi, Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel- biodiesel blends, and blend adulteration with soy oil, Energy and Fuels. 23 (2009) 3773–3782. https://doi.org/10.1021/ef900130m.
DOI: 10.1021/ef900130m
Google Scholar
[40]
R.I. Nakayama, M. Imai, J.M. Woodley, Ultrasound-assisted production of biodiesel FAME from rapeseed oil in a novel two-compartment reactor, J. Chem. Technol. Biotechnol. 92 (2017) 657–665. https://doi.org/10.1002/jctb.5047.
DOI: 10.1002/jctb.5047
Google Scholar
[41]
F. Abnisa, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes, Bioenergy Res. 6 (2013) 830–840. https://doi.org/10.1007/s12155-013-9313-8.
DOI: 10.1007/s12155-013-9313-8
Google Scholar
[42]
P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, X. Zhang, Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte, J. Power Sources. 284 (2015) 38–43. https://doi.org/10.1016/j.jpowsour. 2015.03.017.
DOI: 10.1016/j.jpowsour.2015.03.017
Google Scholar
[43]
D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation, Langmuir. 22 (2006) 5872–5876. https://doi.org/10.1021/la053171w.
DOI: 10.1021/la053171w
Google Scholar
[44]
S. Chen, Y. Xiang, M.K. Banks, C. Peng, W. Xu, R. Wu, Polyoxometalate-coupled MXene nanohybrid: Via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance, Nanoscale. 10 (2018) 20043–20052. https://doi.org/10.1039/c8nr05760e.
DOI: 10.1039/c8nr05760e
Google Scholar
[45]
M.D. Ionita, S. Vizireanu, S.D. Stoica, M. Ionita, A.M. Pandele, A. Cucu, I. Stamatin, L.C. Nistor, G. Dinescu, Functionalization of carbon nanowalls by plasma jet in liquid treatment, Eur. Phys. J. D. 70 (2016). https://doi.org/10.1140/epjd/e2016-60499-8.
DOI: 10.1140/epjd/e2016-60499-8
Google Scholar
[46]
Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes, J. Am. Chem. Soc. 131 (2009) 898–899. https://doi.org/10.1021/ja807934n.
DOI: 10.1021/ja807934n
Google Scholar
[47]
R. Duffin, C.L. Tran, A. Clouter, D.M. Brown, W. Macnee, V. Stone, K. Donaldson, The Importance of Surface Area and Specific Reactivity in the Acute Pulmonary Inflammatory Response to Particles, Ann. Occup. Hyg. 46 (2002) 242–245. https://doi.org/10.1093/annhyg/ mef684.
Google Scholar
[48]
A. Laachachi, E. Leroy, M. Cochez, M. Ferriol, J.M.L. Cuesta, Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of PMMA, Polym. Degrad. Stab. 89 (2005) 344–352. https://doi.org/10.1016/j.polymdegradstab.2005.01.019.
DOI: 10.1016/j.polymdegradstab.2005.01.019
Google Scholar
[49]
H.M. Ng, L.T. Sin, T.T. Tee, S.T. Bee, D. Hui, C.Y. Low, A.R. Rahmat, Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers, Compos. Part B Eng. 75 (2015) 176–200. https://doi.org/10.1016/j.compositesb.2015.01.008.
DOI: 10.1016/j.compositesb.2015.01.008
Google Scholar
[50]
H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys. 91 (2002) 4568–4572. https://doi.org/10.1063/1.1454184.
DOI: 10.1063/1.1454184
Google Scholar
[51]
A. Arifutzzaman, A. Faris, Z. Alam, A.A. Khan, R. Saidur, Effect of Exfoliated Graphene on Thermal Conductivity Enhancements of Graphene-Ironoxide Hybrid Nanofluids : Experimental Investigation and Effective Medium Theories, 67 (2021) 97–114. https://doi.org/10.4028/www.scientific.net/JNanoR.67.97.
DOI: 10.4028/www.scientific.net/jnanor.67.97
Google Scholar
[52]
R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen, X. Hou, B. Wang, C. Te Lin, N. Jiang, J. Yu, Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading, Sci. Rep. 9 (2019) 1–14. https://doi.org/10.1038/s41598-019-45664-4.
DOI: 10.1038/s41598-019-45664-4
Google Scholar
[53]
L. Guo, Z. Zhang, M. Li, R. Kang, Y. Chen, G. Song, S.T. Han, C. Te Lin, N. Jiang, J. Yu, Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying, Compos. Commun. 19 (2020) 134–141. https://doi.org/10.1016/j.coco. 2020.03.009.
DOI: 10.1016/j.coco.2020.03.009
Google Scholar
[54]
X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances, Chem. Eng. J. 380 (2020) 122475. https://doi.org/10.1016/j.cej.2019.122475.
DOI: 10.1016/j.cej.2019.122475
Google Scholar
[55]
K. V. Mahesh, V. Linsha, A. Peer Mohamed, S. Ananthakumar, Processing of 2D-MAXene nanostructures and design of high thermal conducting, rheo-controlled MAXene nanofluids as a potential nanocoolant, Elsevier B.V., 2016. https://doi.org/10.1016/j.cej.2016.04.010.
DOI: 10.1016/j.cej.2016.04.010
Google Scholar
[56]
R. Liu, W. Li, High-Thermal-Stability and High-Thermal-Conductivity Ti3C2T x MXene/Poly(vinyl alcohol) (PVA) Composites, ACS Omega. 3 (2018) 2609–2617. https://doi.org/10.1021/acsomega.7b02001.
DOI: 10.1021/acsomega.7b02001
Google Scholar
[57]
M.I. Pryazhnikov, A. V. Minakov, V.Y. Rudyak, D. V. Guzei, Thermal conductivity measurements of nanofluids, Int. J. Heat Mass Transf. 104 (2017) 1275–1282. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.080.
DOI: 10.1016/j.ijheatmasstransfer.2016.09.080
Google Scholar
[58]
A. Sajeeb, P.K. Rajendrakumar, Investigation on the rheological behavior of coconut oil based hybrid CeO2/CuO nanolubricants, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 233 (2019) 170–177. https://doi.org/10.1177/1350650118772149.
DOI: 10.1177/1350650118772149
Google Scholar
[59]
T.X. Phuoc, M. Massoudi, Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids, Int. J. Therm. Sci. 48 (2009) 1294–1301. https://doi.org/10.1016/j.ijthermalsci.2008.11.015.
DOI: 10.1016/j.ijthermalsci.2008.11.015
Google Scholar
[60]
S.M. Yusof, N. Hussin, M. Isa, Viscosity Reduction of Palm Oil via Ultrasonic Radiation, Appl. Mech. Mater. 785 (2015) 315–319. https://doi.org/10.4028/www.scientific.net/amm. 785.315.
DOI: 10.4028/www.scientific.net/amm.785.315
Google Scholar
[61]
S.M. Yusof, N. Hussin, M. Isa, M.K.M. Jamil, K. Azmi, Study on palm oil and treated waste vegetable oil impregnated paper, Key Eng. Mater. 744 (2017) 511–515. https://doi.org/10.4028/www.scientific.net/KEM.744.511.
DOI: 10.4028/www.scientific.net/kem.744.511
Google Scholar