Preparation of Superparamagnetic Cobalt Ferrite Nanoparticles with High Saturation Magnetization by Temperature-Controlled Co-Precipitation Method

Article Preview

Abstract:

In this study, the effect of reaction temperature on the properties of cobalt ferrite nanoparticles was investigated. X-ray diffraction analysis and Fourier transform infrared spectroscopy confirmed that synthesized nanoparticles are cobalt ferrite. Particle sizes and shapes were determined by a transmission electron microscope, and magnetic measurements were done using a vibrating sample magnetometer. The average particle size varies in the range of 5.7 - 10.7 nm as the temperature is raised from 30 to 80°C. With that, there is a transition from ferrimagnetic to superparamagnetic behaviors at 40°C. The critical size of cobalt ferrite nanoparticles for the superparamagnetic limit with zero coercivity is found to be around 6 nm, and its saturation magnetization value is 25.4 emu/g. This value is impressive higher compared to that in the other studies with similar preparation conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-102

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. S. A. Sabah H. Sabeeh, Preparation and Studying Magnetic Properties of Cobalt Ferrite (CoFe2O4) Material, Int. J. Sci. Eng. Res., 8 (2017) 3-8.

Google Scholar

[2] Tahereh Shahjuee, Seyyed Morteza Masoudpanah, Seyed Mohammad Mirkazemi, Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia, J. Ultrafine Grained Nanostructured Mater., 50 (2017) 105–110.

Google Scholar

[3] I. Sharifi, H. Shokrollahi, and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater., 324 (2012) 903–906.

DOI: 10.1016/j.jmmm.2011.10.017

Google Scholar

[4] T. Prabhakaran, R.V. Mangalaraja, Juliano C. Denardin and J.A. Jiménez, The effect of reaction temperature on the structural and magnetic properties of nano CoFe2O4, Ceramics International, 43 (2017) 5599–5606.

DOI: 10.1016/j.ceramint.2017.01.092

Google Scholar

[5] P. Kuruva, S. Matteppanavar, S. Srinath, and T. Thomas, Size control and magnetic property trends in cobalt ferrite nanoparticles synthesized using an aqueous chemical route, IEEE Trans. Magn., 50 (2014).

DOI: 10.1109/tmag.2013.2283467

Google Scholar

[6] Z. L. Ahmad Amirabadizadeh, Zohre Salighe, Reza Sarhaddi, Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties, J. Magn. Magn. Mater., 434 (2017) 78–85.

DOI: 10.1016/j.jmmm.2017.03.023

Google Scholar

[7] Y. Il Kim, D. Kim, and C. S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled co-precipitation method, Phys. B Condens. Matter., 337 (2003) 42–51.

DOI: 10.1016/s0921-4526(03)00322-3

Google Scholar

[8] O. Karaagac, B. Bilir, and H. Kockar, Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration, J. Supercond. Nov. Magn., 28 (2015) 1021–1027.

DOI: 10.1007/s10948-014-2798-3

Google Scholar

[9] Kambiz Hedayati, Sara Azarakhsh, Davood Ghanbari, Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method, J. Nanostruct, 6 (2016) 127–131.

Google Scholar

[10] G. Nabiyouni, S. Sharifi, D. Ghanbari, A simple precipitation methos for synthesis of CoFe2O4 nanoparticles, J. Nanostructures, 4 (2014) 317–323.

Google Scholar

[11] O. Karaagac, B. B. Yildiz, and H. Köçkar, The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization, J. Magn. Magn. Mater., 473 (2019) 262–267.

DOI: 10.1016/j.jmmm.2018.10.063

Google Scholar

[12] N. L. Hong Lei Yuan, Yong Qiang Wang, Shao Min Zhou, Li Sheng Liu, Xi Liang Chen, Shi Yun Lou, Rui Jian Yuan, Yao Ming Hao: Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization, Nanoscale Res. Lett. 5 (2010) 1817–1821.

DOI: 10.1007/s11671-010-9718-7

Google Scholar

[13] H. T. K. Nguyen, N. Q. Hung, T. V. Thang, Size control of precipitated magnetite nanoparticles, J. Sci. Technol., 93 (2013) 20–26.

Google Scholar

[14] C. R. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho, and P. C. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures, AIP Adv., 8 (2018).

DOI: 10.1063/1.5006321

Google Scholar

[15] C.H. Chia, S. Zakaria, M. Yusoff, S.C. Goh, C.Y. Haw, Sh. Ahmadi, N.M. Huang, H.N. Lim, Size and crystallinity-dependent magnetic properties of CoFe2O4 nanocrystals, Ceram. Int., . 36 (2010) 605–609.

DOI: 10.1016/j.ceramint.2009.10.001

Google Scholar

[16] I. C. Madsen, N. V. Y. Scarlett, and A. Kern,Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction, Zeitschrift fur Krist., 226 (2011) 944–955.

DOI: 10.1524/zkri.2011.1437

Google Scholar

[17] Z. Wang, P. Lazor, S. K. Saxena, and G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4), J. Solid State Chem., 165 (2002) 165–170.

DOI: 10.1006/jssc.2002.9527

Google Scholar

[18] B.B.V.S. Vara Prasad, K.V. Ramesh, A. Srinivas, Structural and magnetic studies on Co-Zn nano ferrite synthesized via sol-gel and combustion methods, Mater. Sci., 37 (2019) 39–54.

DOI: 10.2478/msp-2019-0013

Google Scholar

[19] M. C. Suryanarayana, X-Ray Diffraction - A Practical Approach, Springer, 1998, 255-258.

Google Scholar

[20] C. H. Chia, S. Zakaria, R. Farahiyan, L. Tze Khong, K. L. Nguyen, M. Abduliah & S. Ahmad, Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical co-precipitation method, Sains Malaysiana, 37 (2008) 389–394.

Google Scholar

[21] D. H. Quyen, N. N. Anh, and H. T. K.Nguyen, Effect of Reaction pH on Characterization of Co-precipitated Cobalt ferrite Nanoparticles, Int. J. Sci. Res. Sci. Eng. Technol., 4 (2018) 635–639.

Google Scholar

[22] H. M. Lu, W. T. Zheng, and Q. Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature, J. Phys. D. Appl. Phys., 40 (2007) 320–325.

DOI: 10.1088/0022-3727/40/2/006

Google Scholar

[23] K. Haneda and A. H. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles, J. Appl. Phys., 63 (1988) 4258–4260.

DOI: 10.1063/1.340197

Google Scholar

[24] Sašo Gyergyek, Miha Drofenik, Darko Makovec, Oleic acid coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis, Materials Chemistry and Physics, 133 (2012) 515-522.

DOI: 10.1016/j.matchemphys.2012.01.077

Google Scholar

[25] O. Perales-Pérez and Y. Cedeño-Mattei, Magnetic Spinels - Synthesis, Properties and Applications, Intech, 2017, 52-72.

Google Scholar