[1]
Z. S. A. Sabah H. Sabeeh, Preparation and Studying Magnetic Properties of Cobalt Ferrite (CoFe2O4) Material, Int. J. Sci. Eng. Res., 8 (2017) 3-8.
Google Scholar
[2]
Tahereh Shahjuee, Seyyed Morteza Masoudpanah, Seyed Mohammad Mirkazemi, Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia, J. Ultrafine Grained Nanostructured Mater., 50 (2017) 105–110.
Google Scholar
[3]
I. Sharifi, H. Shokrollahi, and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater., 324 (2012) 903–906.
DOI: 10.1016/j.jmmm.2011.10.017
Google Scholar
[4]
T. Prabhakaran, R.V. Mangalaraja, Juliano C. Denardin and J.A. Jiménez, The effect of reaction temperature on the structural and magnetic properties of nano CoFe2O4, Ceramics International, 43 (2017) 5599–5606.
DOI: 10.1016/j.ceramint.2017.01.092
Google Scholar
[5]
P. Kuruva, S. Matteppanavar, S. Srinath, and T. Thomas, Size control and magnetic property trends in cobalt ferrite nanoparticles synthesized using an aqueous chemical route, IEEE Trans. Magn., 50 (2014).
DOI: 10.1109/tmag.2013.2283467
Google Scholar
[6]
Z. L. Ahmad Amirabadizadeh, Zohre Salighe, Reza Sarhaddi, Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties, J. Magn. Magn. Mater., 434 (2017) 78–85.
DOI: 10.1016/j.jmmm.2017.03.023
Google Scholar
[7]
Y. Il Kim, D. Kim, and C. S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled co-precipitation method, Phys. B Condens. Matter., 337 (2003) 42–51.
DOI: 10.1016/s0921-4526(03)00322-3
Google Scholar
[8]
O. Karaagac, B. Bilir, and H. Kockar, Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration, J. Supercond. Nov. Magn., 28 (2015) 1021–1027.
DOI: 10.1007/s10948-014-2798-3
Google Scholar
[9]
Kambiz Hedayati, Sara Azarakhsh, Davood Ghanbari, Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method, J. Nanostruct, 6 (2016) 127–131.
Google Scholar
[10]
G. Nabiyouni, S. Sharifi, D. Ghanbari, A simple precipitation methos for synthesis of CoFe2O4 nanoparticles, J. Nanostructures, 4 (2014) 317–323.
Google Scholar
[11]
O. Karaagac, B. B. Yildiz, and H. Köçkar, The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization, J. Magn. Magn. Mater., 473 (2019) 262–267.
DOI: 10.1016/j.jmmm.2018.10.063
Google Scholar
[12]
N. L. Hong Lei Yuan, Yong Qiang Wang, Shao Min Zhou, Li Sheng Liu, Xi Liang Chen, Shi Yun Lou, Rui Jian Yuan, Yao Ming Hao: Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization, Nanoscale Res. Lett. 5 (2010) 1817–1821.
DOI: 10.1007/s11671-010-9718-7
Google Scholar
[13]
H. T. K. Nguyen, N. Q. Hung, T. V. Thang, Size control of precipitated magnetite nanoparticles, J. Sci. Technol., 93 (2013) 20–26.
Google Scholar
[14]
C. R. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho, and P. C. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures, AIP Adv., 8 (2018).
DOI: 10.1063/1.5006321
Google Scholar
[15]
C.H. Chia, S. Zakaria, M. Yusoff, S.C. Goh, C.Y. Haw, Sh. Ahmadi, N.M. Huang, H.N. Lim, Size and crystallinity-dependent magnetic properties of CoFe2O4 nanocrystals, Ceram. Int., . 36 (2010) 605–609.
DOI: 10.1016/j.ceramint.2009.10.001
Google Scholar
[16]
I. C. Madsen, N. V. Y. Scarlett, and A. Kern,Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction, Zeitschrift fur Krist., 226 (2011) 944–955.
DOI: 10.1524/zkri.2011.1437
Google Scholar
[17]
Z. Wang, P. Lazor, S. K. Saxena, and G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4), J. Solid State Chem., 165 (2002) 165–170.
DOI: 10.1006/jssc.2002.9527
Google Scholar
[18]
B.B.V.S. Vara Prasad, K.V. Ramesh, A. Srinivas, Structural and magnetic studies on Co-Zn nano ferrite synthesized via sol-gel and combustion methods, Mater. Sci., 37 (2019) 39–54.
DOI: 10.2478/msp-2019-0013
Google Scholar
[19]
M. C. Suryanarayana, X-Ray Diffraction - A Practical Approach, Springer, 1998, 255-258.
Google Scholar
[20]
C. H. Chia, S. Zakaria, R. Farahiyan, L. Tze Khong, K. L. Nguyen, M. Abduliah & S. Ahmad, Size-controlled synthesis and characterization of Fe3O4 nanoparticles by chemical co-precipitation method, Sains Malaysiana, 37 (2008) 389–394.
Google Scholar
[21]
D. H. Quyen, N. N. Anh, and H. T. K.Nguyen, Effect of Reaction pH on Characterization of Co-precipitated Cobalt ferrite Nanoparticles, Int. J. Sci. Res. Sci. Eng. Technol., 4 (2018) 635–639.
Google Scholar
[22]
H. M. Lu, W. T. Zheng, and Q. Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature, J. Phys. D. Appl. Phys., 40 (2007) 320–325.
DOI: 10.1088/0022-3727/40/2/006
Google Scholar
[23]
K. Haneda and A. H. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles, J. Appl. Phys., 63 (1988) 4258–4260.
DOI: 10.1063/1.340197
Google Scholar
[24]
Sašo Gyergyek, Miha Drofenik, Darko Makovec, Oleic acid coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis, Materials Chemistry and Physics, 133 (2012) 515-522.
DOI: 10.1016/j.matchemphys.2012.01.077
Google Scholar
[25]
O. Perales-Pérez and Y. Cedeño-Mattei, Magnetic Spinels - Synthesis, Properties and Applications, Intech, 2017, 52-72.
Google Scholar