Mathematical Investigation for Flow Characteristics of Laminar Ferro-Nanofluid Incorporating Cobalt Ferrite Nanoparticles

Article Preview

Abstract:

The effect of a magnetic source of variable strength has been studied on ferro-nanofluid incorporating nanoparticles of Cobalt ferrite (CoFe2O4) with water as a base fluid. Group method has been used to remodel the governing system to a system of ordinary differential equations. The recent study was motivated by inspecting the effect of four parameters including nanoparticles volume fraction, , Prandtl number, , magnetic field strength of the source,, and temperature difference ratio with respect to ambient temperature, . The results showed that the nanofluid velocity and shear stress increased as long as and increase. On the other hand, both are inversely related to the increment in Pr and Temperature distribution inside the boundary layer was noticed to increase due to the increment in Pr values and decrease due to the increment ratios. Contrarily, the heat flux throughout the boundary layer decreased and increased due to increasing respectively. Key words: Ferro-hydrodynamic; Nanofluids; Group Method

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-69

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Dey and D. S. Sahu, A review on the application of the nanofluids,, Heat Transfer (2020).

Google Scholar

[2] S. Almurtaji, N. Ali, J. A. Teixeira and A. Addali, On the Role of Nanofluids in Thermal-hydraulic Performance of Heat ExchangersA Review,, Nanomaterials Nanomaterials 10 (2020), 734.

DOI: 10.3390/nano10040734

Google Scholar

[3] N. Ali, J. A. Teixeira and A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties,, Journal of Nanomaterials 2018 (2018), 6978130.

DOI: 10.1155/2018/6978130

Google Scholar

[4] S. Pal, A. Datta, S. Sen, A. Mukhopdhyay, K. Bandopadhyay and R. Ganguly, Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications,, Journal of Magnetism and Magnetic Materials 323 (2011), 2701-2709.

DOI: 10.1016/j.jmmm.2011.06.016

Google Scholar

[5] H. Aminfar, M. Mohammadpourfard and F. Mohseni, Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields,, Journal of Magnetism and Magnetic Materials 324 (2012), 830-842.

DOI: 10.1016/j.jmmm.2011.09.028

Google Scholar

[6] M. Sheikholeslami and D. D. Ganji, Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer,, Energy 75 (2014), 400-410.

DOI: 10.1016/j.energy.2014.07.089

Google Scholar

[7] M. Ghasemian, Z. N. Ashrafi, M. Goharkhah and M. Ashjaee, Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields,, Journal of Magnetism and Magnetic Materials 381 (2015), 158-167.

DOI: 10.1016/j.jmmm.2014.12.078

Google Scholar

[8] M. Sheikholeslami, D. D. Ganji and M. M. Rashidi, Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation,, Journal of the Taiwan Institute of Chemical Engineers 47 (2015), 6-17.

DOI: 10.1016/j.jtice.2014.09.026

Google Scholar

[9] M. Sheikholeslami, K. Vajravelu and M. M. Rashidi, Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field,, International journal of heat and mass transfer 92 (2016), 339-348.

DOI: 10.1016/j.ijheatmasstransfer.2015.08.066

Google Scholar

[10] A. Majeed, A. Zeeshan and R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux,, Journal of Molecular Liquids 223 (2016), 528-533.

DOI: 10.1016/j.molliq.2016.07.145

Google Scholar

[11] H. R. Goshayeshi, M. R. Safaei, M. Goodarzi and M. Dahari, Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe,, Powder Technology 301 (2016), 1218-1226.

DOI: 10.1016/j.powtec.2016.08.007

Google Scholar

[12] X.-h. Sun, M. Massoudi, N. Aubry, Z.-h. Chen and W.-T. Wu, Natural convection and anisotropic heat transfer in a ferro-nanofluid under magnetic field,, International Journal of Heat and Mass Transfer 133 (2019), 581-595.

DOI: 10.1016/j.ijheatmasstransfer.2018.12.132

Google Scholar

[13] J. G. Monroe, S. Kumari, J. D. Fairley, K. B. Walters, M. J. Berg and S. M. Thompson, On the energy harvesting and heat transfer ability of a ferro-nanofluid oscillating heat pipe,, International Journal of Heat and Mass Transfer 132 (2019), 162-171.

DOI: 10.1016/j.ijheatmasstransfer.2018.11.096

Google Scholar

[14] A. Sharifi, S. Y. Motlagh and H. Badfar, Ferro hydro dynamic analysis of heat transfer and biomagnetic fluid flow in channel under the effect of two inclined permanent magnets,, Journal of Magnetism and Magnetic Materials 472 (2019), 115-122.

DOI: 10.1016/j.jmmm.2018.10.029

Google Scholar

[15] W. Nessab, H. Kahalerras, B. Fersadou and D. Hammoudi, Numerical investigation of ferrofluid jet flow and convective heat transfer under the influence of magnetic sources,, Applied Thermal Engineering 150 (2019), 271-284.

DOI: 10.1016/j.applthermaleng.2018.12.164

Google Scholar

[16] A. M. Aly and S. E. Ahmed, ISPH simulations for a variable magneto-convective flow of a ferrofluid in a closed space includes open circular pipes,, International Communications in Heat and Mass Transfer 110 (2020), 104412.

DOI: 10.1016/j.icheatmasstransfer.2019.104412

Google Scholar

[17] S. M. Mabrouk and A. S. Rashed, Analysis of (3 + 1)-dimensional Boiti – Leon –Manna–Pempinelli equation via Lax pair investigation and group transformation method,, Computers & Mathematics with Applications 74 (2017), 2546-2556.

DOI: 10.1016/j.camwa.2017.07.033

Google Scholar

[18] A. S. Rashed, Analysis of (3+1)-dimensional unsteady gas flow using optimal system of Lie symmetries,, Mathematics and Computers in Simulation 156 (2019), 327-346.

DOI: 10.1016/j.matcom.2018.08.008

Google Scholar

[19] R. Saleh, M. Kassem and S. Mabrouk, Exact solutions of Calgero-Bogoyavlenskii-Schiff equation using the singular manifold method after Lie reductions,, MMA Mathematical Methods in the Applied Sciences 40 (2017), 5851-5862.

DOI: 10.1002/mma.4435

Google Scholar

[20] A. S. Rashed and M. M. Kassem, Group analysis for natural convection from a vertical plate,, Journal of Computational and Applied Mathematics 222 (2008), 392-403.

DOI: 10.1016/j.cam.2007.11.010

Google Scholar

[21] S. Mabrouk and M. Kassem, Group similarity solutions of (2 + 1) Boiti-Leon-Manna-Pempinelli Lax pair,, ASEJ Ain Shams Engineering Journal 5 (2014), 227-235.

DOI: 10.1016/j.asej.2013.06.004

Google Scholar

[22] S. Mabrouk, M. Kassem and M. Abd-el-Malek, Group similarity solutions of the lax pair for a generalized Hirota-Satsuma equation,, Applied Mathematics and Computation 219 (2013), 7882-7890.

DOI: 10.1016/j.amc.2013.02.013

Google Scholar

[23] A. S. Rashed and M. M. Kassem, Group analysis for natural convection from a vertical plate,, Journal of computational and applied mathematics. 222 (2009), 392.

DOI: 10.1016/j.cam.2007.11.010

Google Scholar

[24] M. M. Kassem and A. S. Rashed, N-solitons and cuspon waves solutions of (2 + 1)-dimensional Broer–Kaup–Kupershmidt equations via hidden symmetries of Lie optimal system,, Chinese Journal of Physics 57 (2019), 90-104.

DOI: 10.1016/j.cjph.2018.12.007

Google Scholar

[25] S. M. Mabrouk and A. S. Rashed, N-Solitons, kink and periodic wave solutions for (3 + 1)-dimensional Hirota bilinear equation using three distinct techniques,, Chinese Journal of Physics 60 (2019), 48-60.

DOI: 10.1016/j.cjph.2019.02.032

Google Scholar

[26] A. S. Rashed, E. H. Nasr and M. M. Kassem, Boundary Layer Analysis Adjacent to Moving Heated Plate Inside Electrically Conducting Fluid with Heat Source/Sink,, IJHT International Journal of Heat and Technology 38 (2020), 682-688.

DOI: 10.18280/ijht.380312

Google Scholar

[27] A. S. Rashed, T. A. Mahmoud and M. M. Kassem, Behavior of Nanofluid with Variable Brownian and Thermal ‎Diffusion Coefficients Adjacent to a Moving Vertical Plate,, Journal of Applied and Computational Mechanics (2021).

Google Scholar

[28] A. S. Rashed, T. Mahmoud and M. Kassem, Analysis of homogeneous steady state nanofluid surrounding cylindrical solid pipes,, Egyptian Journal for Engineering Sciences and Technology 31 (2020), 71-82.

DOI: 10.21608/eijest.2020.38518.1003

Google Scholar

[29] A. S. Rashed, S. M. Mabrouk and A.-M. Wazwaz, Forward scattering for non-linear wave propagation in (3 + 1)-dimensional Jimbo-Miwa equation using singular manifold and group transformation methods,, Waves in Random and Complex Media (2020), 1-13.

DOI: 10.1080/17455030.2020.1795303

Google Scholar

[30] A. S. Rashed, S. M. Mabrouk and A.-M. Wazwaz, Unsteady three-dimensional laminar flow over a submerged plate in electrically conducting fluid with applied magnetic field,, Waves in Random and Complex Media (2021), 1-20.

DOI: 10.1080/17455030.2021.1883147

Google Scholar

[31] A. S. Rashed, E. H. Nasr and M. M. Kassem, Similarity analysis of mass and heat transfer of FHD steady flow of nanofluid incorporating magnetite nanoparticles (Fe3O4) ,, East African Scholars Journal of Engineering and Computer Sciences 3 (2020).

Google Scholar

[32] A. J. A. Morgan, The reduction by one of the number of independent variables in some systems of partial differential equations,, The Quarterly Journal of Mathematics 3 (1952), 250-259.

DOI: 10.1093/qmath/3.1.250

Google Scholar

[33] M. M. Kassem and A. S. Rashed, Group similarity transformation of a time dependent chemical convective process,, Proc. World Acad. Sci. Eng. Technol. Proceedings of World Academy of Science, Engineering and Technology 40 (2009), 44-51.

Google Scholar

[34] S. C. Chapra, Applied numerical methods with MATLAB for engineers and scientists,, McGraw-Hill Education, New York, N.Y., (2018).

Google Scholar

[35] N. Muhammad, S. Nadeem and M. Mustafa, Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid,, PloS one 13 (2018), e0188460.

DOI: 10.1371/journal.pone.0188460

Google Scholar