Characterization of Stress-Tolerant Bacteria for the Biosynthesis of Silver Nanoparticles and their Applications

Article Preview

Abstract:

The biogenesis of silver nanoparticles by microbes has become an essential branch in the field of nanotechnology because of its safe, environment-friendly, economical, and time-saving nature. In the current research work, we have screened some stress-tolerant bacteria based on pH, temperature, salt-tolerant efficacy and further utilized them for the synthesis of silver nanoparticles. The test bacterium was isolated from the soil sample through the serial dilution method on nutrient agar media (NAM). Based on identification using morphological characteristics, biochemical analysis, and 16srRNA sequencing bacteria were identified as Bacillus sp. The extracellular biosynthesis approach was used for synthesizing silver nanoparticles by Bacillus sp. Characterization of synthesized silver nanoparticles was done by using UV-Visible Spectrophotometer and absorbance peak was recorded at 430nm. Transmission electron microscopy (TEM) study of synthesized nanoparticles showed the shape of nanoparticles was spherical and hexagonal with a size ranging from 10nm-47nm. For the extracellular biosynthesis of silver nanoparticles pH was set to 7.0 and temperature at 37°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-80

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Fendler, Nanoparticles and nanostructured films: preparation, characterization, and applications, John Wiley & Son, Potsdam, USA, (1998).

Google Scholar

[2] T.S. Wong, U. Schwane berg, Protein engineering in bioelectric catalysis, Current Opinion in Biotechnology, 14(6) (2003) 590–596.

Google Scholar

[3] P. Kaur, R. Thakur, A. Chaudhury, Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens, J Green Chem Lett Rev. 9 (2016) 33–38.

DOI: 10.1080/17518253.2016.1141238

Google Scholar

[4] Y. Mu, X. Jiang, Z. Ai, F. Jia, and L. Zhang, Mn2+ promoted Cr (VI) reduction with oxalic acid: the indispensable role of In-situ generated Mn3+, J. Hazard Mater, 343 (2018) 356–363.

DOI: 10.1016/j.jhazmat.2017.10.008

Google Scholar

[5] X. Hou, X. Huang, F. Jia., Z. Ai, J. Zhao and L. Zhang, Hydroxylamine promoted goethite surface fenton degradation of organic pollutants, Environ Sci. Technol. 51 (2017) 5118–5126.

DOI: 10.1021/acs.est.6b05906

Google Scholar

[6] H. Li, J. Shang, Z. Yang, W. Shen, Z. Ai and L. Zhang, Oxygen vacancy associated surface fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity, Environ Sci. Technol. 51 (2017) 5685–5694.

DOI: 10.1021/acs.est.7b00040

Google Scholar

[7] Y. Mu, Z. Ai, and L. Zhang, Phosphate shifted oxygen reduction pathway on Fe@Fe2o3 core–shell nanowires for enhanced reactive oxygen species generation and aerobic 4-chlorophenol degradation, Environ Sci. Technol. 51 (2017) 8101–8109.

DOI: 10.1021/acs.est.7b01896

Google Scholar

[8] N. Chen, Y. Huang, X. Hou, Z. Ai and L. Zhang, Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation, Environ Sci. Technol. 51 (2017) 11278–11287.

DOI: 10.1021/acs.est.7b02740

Google Scholar

[9] X. Hou, X. Huang, Z. Ai, J. Zhao, & L. Zhang, Ascorbic acid-induced atrazine degradation, Journal of Hazardous Materials, 327 (2017) 71–78.

DOI: 10.1016/j.jhazmat.2016.12.048

Google Scholar

[10] X. Hou, X. Huang, Z. Ai, J. Zhao and L. Zhang, Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants, J. Hazard Mater, 310 (2016) 170–178.

DOI: 10.1016/j.jhazmat.2016.01.020

Google Scholar

[11] Y. Huang, X. Hou, F. Song, J. Zhao and L. Zhang, Facet-dependent Cr(VI) adsorption of hematite nanocrystals, Environ Sci. Technol. 50 (2016) 1964–(1972).

DOI: 10.1021/acs.est.5b05111

Google Scholar

[12] L. Wang, M. Cao, Z. Ai and L. Zhang, Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous–tetra polyphosphate complex, Environ Sci. Technol. 49 (2016) 3032–3039.

DOI: 10.1021/es505984y

Google Scholar

[13] Y. Qin, F. Song, Z. Ai, P. Zhang, and L. Zhang, Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 Fenton system, Environ Sci. Technol. 49 (2015) 7948–7956.

DOI: 10.1021/es506110w

Google Scholar

[14] X. Ding, K. Zhao, and L. Zhang, Enhanced photocatalytic removal of sodium Penta chlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions, Environ Sci. Technol. 48 (2014) 5823–5831.

DOI: 10.1021/es405714q

Google Scholar

[15] D. Li, Y. Zhang, Y. Zhang, X. Zhou and S. Guo, Fabrication of bidirectionally doped𝛽-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation, J. Hazard Mater (258–259) (2013) 42–49.

DOI: 10.1016/j.jhazmat.2013.02.058

Google Scholar

[16] S. Ge and L. Zhang, Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized In(OH)x Syhollow nano cubes: a comparative study, Environ Sci. Technol. 45 (2011) 3027–3033.

DOI: 10.1021/es103773g

Google Scholar

[17] H. Barabadi, M. Ovais, Z.K. Shin wari, M. Saravanan, Anti-cancer green bionanomaterials: present status and future prospects, Green Chem. Lett. Rev. 10 (2017) 285–314.

DOI: 10.1080/17518253.2017.1385856

Google Scholar

[18] R. Emmanuel, M. Saravanan, M. Ovais, S. Padmavathy, Z.K. Shinwari, P. Prakash, Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: a nano antibiotic approach, Microb. Pathog. 113 (2017) 295–302.

DOI: 10.1016/j.micpath.2017.10.055

Google Scholar

[19] R.M. Jose, C.L. Jose, E. Alejandra, H .Katherine, B.K. Juan, R. Jose Tapia and Y. Miguel Jose, The bactericidal effect of silver nanoparticles, Nano technol, 16 (2005) 2346-2353.

Google Scholar

[20] R. Pacios, R. Marcilla, C. Pozo-Gonzalo, J.A. Pomposo, H. Grande, J. Aizpurua, and D. Mecerreyes, Combined Electrochromic and Plasmonic Optical Responses in Conducting Polymer/Metal Nanoparticle Films, Journal of Nanoscience and Nanotechnology, 7(8) (2007) 2938–2941.

DOI: 10.1166/jnn.2007.623

Google Scholar

[21] P. Singh, Y-J.Kim, D. Zhang, and D-C.Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol. 34 (2016) 588–599.

DOI: 10.1016/j.tibtech.2016.02.006

Google Scholar

[22] B. Pooja, S.D. Joginder, and K. G. Suresh, Biogenesis of nanoparticles: A review, African Journal of Biotechnology, 13(28) (2014) 2778–2785.

DOI: 10.5897/ajb2013.13458

Google Scholar

[23] D.R. Lovley, J.F. Stolz, G.L. Nord and E.J.P. Phillips, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330(6145) (1987) 252–254.

DOI: 10.1038/330252a0

Google Scholar

[24] D. P. Dickson, Nanostructured magnetism in living systems, Journal of Magnetism and Magnetic Materials, 203(1-3) (1999) 46–49.

DOI: 10.1016/s0304-8853(99)00178-x

Google Scholar

[25] T. Klaus-Joerger, R. Joerger, E. Olsson, and C.-G. Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, Trends in Biotechnology, 19(1) (2001) 15–20.

DOI: 10.1016/s0167-7799(00)01514-6

Google Scholar

[26] N.I. Hulkoti, T. Taranath, Biosynthesis of nanoparticles using microbes—A review, Colloids Surf. B. 121 (2014) 474–483.

DOI: 10.1016/j.colsurfb.2014.05.027

Google Scholar

[27] J. G. Holt, Bergey's manual of determinative bacteriology, ninth ed., Williams and Wilkins, Baltimore, M.A. (1994).

Google Scholar

[28] J. Michael Janda, L. Sharon, Abbott, 16s rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, Perils, and Pitfalls, 45(9) (2007) 2761-2764.

DOI: 10.1128/jcm.01228-07

Google Scholar

[29] I. Lobo, Basic Local Alignment Search Tool (BLAST), Nature Education, 1(1) (2008) 215.

Google Scholar

[30] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids and Surfaces B: Biointerfaces, 28(4) (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[31] P. Chowdappa, G. Shivakumar, Nanotechnology in crop protection: status and cope, PestManagHorticEcosys 19 (2013) 131–151.

Google Scholar

[32] S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S. R. K. Pandian, J. Muniyandi, S. H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids and Surfaces B: Biointerfaces, 74(1) (2009) 328–335.

DOI: 10.1016/j.colsurfb.2009.07.048

Google Scholar