[1]
R. Fatima, M. Priya, L. Indurthi, V. Radhakrishnan and R. Sudhakaran, Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens, Microbial Pathogenesis. 138 (2020) 103780. https://doi.org/10.1016/ j.micpath.2019.103780.
DOI: 10.1016/j.micpath.2019.103780
Google Scholar
[2]
P.G. Jamkhande, N.W. Ghule, A.H. Bamer and M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug Delivery Science and Technology. 53 (2019) 101174. https://doi.org/10.1016/ j.jddst.2019.101174.
DOI: 10.1016/j.jddst.2019.101174
Google Scholar
[3]
N. Madubuonu, S. O. Aisida, A. Ali, I. Ahmad, T. Zhao, S. Botha, M. Maaza and F.I. Ezema, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, Journal of Photochemistry & Photobiology, B: Biology. 199 (2019) 111601 1-9. https://doi.org/10.1016/j.jphotobiol.2019.111601.
DOI: 10.1016/j.jphotobiol.2019.111601
Google Scholar
[4]
V. Ravichandran, S. Vasanthi, S. Shalini, S.A.A. Shah, M. Tripathy and N. Paliwala, Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles, Results in Physics. 15 (2019) 102565. https://doi.org/10.1016/j.rinp.2019.102565.
DOI: 10.1016/j.rinp.2019.102565
Google Scholar
[5]
P. Nikolaos, C.E. Matthew and H. Louise, Room temperature bioproduction, isolation and anti-microbial properties of stable elemental copper nanoparticles, New Biotechnology. 40 (2018) 275–281.
DOI: 10.1016/j.nbt.2017.10.002
Google Scholar
[6]
M. Luna, R. Zarzuela, M.J. Mosquera, M.L.A. Gil, L.M.C. Aguilera, J.J.D. Jaén, J.M.P. Santander, V.G. Moreno and Y.C. Jimenez, Biosynthesis of uniform ultra-small gold nanoparticles by aged Dracaena Draco L extracts, Colloids and Surfaces A. 581 (2019) 123744. https://doi.org/10.1016/j.colsurfa.2019.123744.
DOI: 10.1016/j.colsurfa.2019.123744
Google Scholar
[7]
D. Baruah, M. Goswami, R.N.S. Yadav, A. Yadav and A.M. Das, Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes, Journal of Photochemistry and Photobiology B Biology. 186 (2018) 51–58. https://doi.org/10.1016/ j.jphotobiol.2018.07.002.
DOI: 10.1016/j.jphotobiol.2018.07.002
Google Scholar
[8]
K.R. Aadil, N. Pandeyb, S.I. Mussatto and H. Jhad, Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity, Journal of Environmental Chemical Engineering. 7 (2019) 103296 (1-8). https://doi.org/10.1016/j.jece.2019.103296.
DOI: 10.1016/j.jece.2019.103296
Google Scholar
[9]
K. Vijayaraghavan, T. Ashokkumar, Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and Applications, Journal of Environmental Chemical Engineering. 5 (2017) 4866–4883. https://doi.org/10.1016/j.jece.2017.09.026.
DOI: 10.1016/j.jece.2017.09.026
Google Scholar
[10]
W.L. Shen, Y.Y. Qu, X.F. Pei, S.Z. Li, S.N. You, J.W. Wang, Z.J. Zhang and J.T. Zhou, Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au, Journal of Hazardous Material. 321 (2017) 299–306.
DOI: 10.1016/j.jhazmat.2016.07.051
Google Scholar
[11]
S. Pirtarighat, M. Ghannadnia and S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Materials Science & Engineering C. 98 (2019) 250–255. https://doi.org/10.1016/j.msec.2018.12.090.
DOI: 10.1016/j.msec.2018.12.090
Google Scholar
[12]
Y.Y. Yu, Q.W. Cheng, C. Sha, Y.X. Chen, S. Naraginti and Y.C. Yong, Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI), Chemical Engineering Journal. 379 (2020) 122404 (1-8). https://doi.org/10.1016/j.cej.2019.122404.
DOI: 10.1016/j.cej.2019.122404
Google Scholar
[13]
A.N. Raouf, N.M. Al-Enazi and I.B.M. Ibraheem, Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity, Arabian Journal of Chemistry. 10 (2017) S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.
DOI: 10.1016/j.arabjc.2013.11.044
Google Scholar
[14]
Z. Bao and C.Q. Lan, Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms—A review, Colloids and Surfaces B: Biointerfaces. 184 (2019) 110519 (1-8). https://doi.org/10.1016/j.colsurfb.2019.110519.
DOI: 10.1016/j.colsurfb.2019.110519
Google Scholar
[15]
D. Jini and S. Sharmila, Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity, Materials Today: Proceedings. 22 (2020) 432-438. https://doi.org/10.1016/j.matpr.2019.07.672.
DOI: 10.1016/j.matpr.2019.07.672
Google Scholar
[16]
F.O. Kup, S. Çoşkunçay and F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Materials Science & Engineering C. 107 (2019) 110207. https://doi.org/10.1016/j.msec.2019.110207.
DOI: 10.1016/j.msec.2019.110207
Google Scholar
[17]
M. Manikandakrishnan, S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandossd, R. Manikandane, M. Tabarsaf, S.G. Youb and N.M. Prabhua, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Journal of Drug Delivery Science and Technology. 54 (2019) 101345. https://doi.org/10.1016/j.jddst.2019.101345.
DOI: 10.1016/j.jddst.2019.101345
Google Scholar
[18]
M.D. Catarino, A.M.S. Silva and S.M. Cardoso, Phycochemical constituents and biological activities of Fucus spp., Marine Drugs. 16 (2018) 249.
DOI: 10.3390/md16080249
Google Scholar
[19]
S.O. Aisida, K. Ugwu and P.A. Akpa, A.C. Nwanya, U. Nwankwo, S.S. Botha, P.M. Ejikeme, I. Ahmad, M. Maaza and F.I. Ezema, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Surfaces and interfaces. 17 (2019) 100359 (1-7). https://doi.org/10.1016/j.matchemphys.2019.121859.
DOI: 10.1016/j.matchemphys.2019.121859
Google Scholar
[20]
M. Das and S.S. Smita, Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity, Applied Nanosciences. 8 (2018) 1059-1067. https://doi.org/10.1007/s13204-018-0721-0.
DOI: 10.1007/s13204-018-0721-0
Google Scholar
[21]
A.F.V. da Silva, A.P. Fagundes, D.L.P. Macuvele, E.F.U. de Carvalho, M. Durazzo, N. Padoin, C. Soares, H.G Riella, Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties, Colloids and Surfaces A. 583 (2019) 123915 (1-10). https://doi.org/10.1016/j.colsurfa.2019.123915.
DOI: 10.1016/j.colsurfa.2019.123915
Google Scholar
[22]
A. Singh, N.B. Singh, I. Hussain, H. Singh, Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis, Journal of Biotechnology. 262 (2017) 11–27. https://doi.org/10.1016/j.jbiotec.2017.09.016.
DOI: 10.1016/j.jbiotec.2017.09.016
Google Scholar
[23]
P. Kuppusamy, S. Ilavenil, S. Srigopalram, G.P. Maniam, M.M. Yusoff, N. Govindan and K.C. Choi, Treating of palm oil mill effluent using Commelina nudiflora mediated copper nanoparticles as a novel bio-control agent, Journal of Cleaner Production. 141 (2017) 1023–1029. https://doi.org/10.1016/j.jclepro.2016.09.176.
DOI: 10.1016/j.jclepro.2016.09.176
Google Scholar
[24]
Y.S. Liu, Y.C. Chang and H.H. Chen, Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants, Journal of food and drug analysis. 26 (2018) 649–656. https://doi.org/10.1016/j.jfda.2017.07.005.
DOI: 10.1016/j.jfda.2017.07.005
Google Scholar
[25]
R.J.B. Pinto, J.M.F. Lucas, P.M. Madalena, S.A.O. Santos, A.J.D. Silvestre, P.A.A.P. Marques and C.S.R. Freire, Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract, Industrial Crops & Products. 105 (2017) 83–92. https://doi.org/10.1016/j.indcrop.2017.05.003.
DOI: 10.1016/j.indcrop.2017.05.003
Google Scholar
[26]
R. Prabhakar, S.R. Samadder and Jyotsana, Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation., Journal of Cleaner Production. 168 (2017) 1201–1210. https://doi.org/10.1016/j.jclepro.2017.09.06.
DOI: 10.1016/j.jclepro.2017.09.063
Google Scholar
[27]
L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon, S.V.N. Pammi, Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica, Journal of environmental sciences. 55 (2017) 157–163. https://doi.org/10.1016/j.jes.2016.04.027.
DOI: 10.1016/j.jes.2016.04.027
Google Scholar
[28]
M. Hamelian, S. Hemmati, K. Varmira and H. Veisi, Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract, Journal of the Taiwan Institute of Chemical Engineers. 93 (2018) 21–30. https://doi.org/10.1016/j.jtice.2018.07.018.
DOI: 10.1016/j.jtice.2018.07.018
Google Scholar
[29]
Z. Zaheer, Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract, Journal of Photochemistry & Photobiology, B: Biology. 178 (2018) 584–592. https://doi.org/10.1016/j.jphotobiol.2017.12.002.
DOI: 10.1016/j.jphotobiol.2017.12.002
Google Scholar
[30]
A.S. Mohanty and B.S. Jena, Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract, Journal of Colloid and Interface Science. 496 (2017) 513–521.
DOI: 10.1016/j.jcis.2017.02.045
Google Scholar
[31]
D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts, Biomedicine & Pharmacotherapy. 89 (2017) 1067–1077.
DOI: 10.1016/j.biopha.2017.02.101
Google Scholar
[32]
G.M. Sangaonkar and K.D. Pawar, Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities, Colloids and Surfaces B: Biointerfaces. 164 (2018) 210–217. https://doi.org/10.1016/j.colsurfb.2018.01.044.
DOI: 10.1016/j.colsurfb.2018.01.044
Google Scholar
[33]
K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha and P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties, Optik. 154 (2018) 593–600. https://doi.org/10.1016/j.ijleo.2017.10.074.
DOI: 10.1016/j.ijleo.2017.10.074
Google Scholar
[34]
N. Nagar and V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves, Materials Chemistry and Physics. 213 (2018) 44–51. https://doi.org/10.1016/j.matchemphys.2018.04.007.
DOI: 10.1016/j.matchemphys.2018.04.007
Google Scholar
[35]
A. Rónavári, D. Kovács, N. Igaz, C. Vágvölgyi, I.M. Boros, Z. Kónya, I. Pfeiffer and M. Kiricsi, Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study, International Journal of Nanomedicine. 12 (2017) 871–883.
DOI: 10.2147/ijn.s122842
Google Scholar
[36]
S. Rajeshkumar and G. Rinitha, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea Americana seeds, Open Nano. 3 (2018) 18–27. https://doi.org/10.1016/j.onano.2018.03.001.
DOI: 10.1016/j.onano.2018.03.001
Google Scholar
[37]
I. Uddin, K. Ahmad, A.A. Khan and M.A. Kazmi, Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor, Sensing and Bio-Sensing Research. 16 (2017) 62–67. https://doi.org/10.1016/j.sbsr.2017.11.005.
DOI: 10.1016/j.sbsr.2017.11.005
Google Scholar
[38]
K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha, P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties, Optik. 154 (2018) 593–600. https://doi.org/10.1016/j.ijleo.2017.10.074.
DOI: 10.1016/j.ijleo.2017.10.074
Google Scholar
[39]
M.P. Patil, R.D. Singh, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare and G.D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource, Microbial Pathogenesis. 121 (2018) 184–189.
DOI: 10.1016/j.micpath.2018.05.040
Google Scholar
[40]
T. Rasheed, M. Bilal, H.M.N. Iqbal and C. Li, Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications, Colloids and Surfaces B: Biointerfaces. 158 (2017) 408–415.
DOI: 10.1016/j.colsurfb.2017.07.020
Google Scholar
[41]
N.D. Pham, M.M. Duong, M.V. Le, H.A. Hoang and L.K.O. Pham, Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici, Comptes Rendus Chimie. 22 (2019) 786-793. https://doi.org/10.1016/j.crci.2019.10.007.
DOI: 10.1016/j.crci.2019.10.007
Google Scholar
[42]
D. Devipriya and S.M. Roopan, Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus, Materials Science and Engineering C. 80 (2017) 38–44.
DOI: 10.1016/j.msec.2017.05.130
Google Scholar
[43]
A. Rajan, A.R. Rajan and D. Philip, Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities, Open Nano. 2 (2017) 1–8. https://doi.org/10.1016/j.onano.2016.11.002.
DOI: 10.1016/j.onano.2016.11.002
Google Scholar
[44]
P. Dauthal and M. Mukhopadhyay, Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles, Chinese Journal of Chemical Engineering. 26 (2018) 1200–1208. https://doi.org/10.1016/j.cjche.2017.12.014.
DOI: 10.1016/j.cjche.2017.12.014
Google Scholar
[45]
A. Sudha, J. Jeyakanthan and P. Srinivasan, Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Resource Efficient Technologies. 3 (2017) 506–515. https://doi.org/10.1016/j.reffit.2017.07.002.
DOI: 10.1016/j.reffit.2017.07.002
Google Scholar
[46]
M. Ponnanikajamideen, S. Rajeshkumar, M. Vanaja and G. Annadurai, In-Vivo Anti-Diabetic and Wound Healing Effect of Antioxidant Gold Nanoparticles Synthesized Using Insulin Plant (Chamaecostus Cuspidatus), Canadian Journal of Diabetes. 43 (2018) 82–89.
DOI: 10.1016/j.jcjd.2018.05.006
Google Scholar