Synthesis, Characterization, and Evaluation of Antimicrobial and Antioxidant Potential of Polyalthia longifolia Mediated Copper Nanoparticles

Article Preview

Abstract:

Synthesis of nanoparticles of transition metals by using medicinal plants has been outstreched in recent years because of the characteristic features which are embodied in the end product. This work is proceded with the aim to synthesize and optimize copper nanoparticles (CuNPs-Pl) using aqueous extract of Polyalthia longifolia leaves (PlL) for characterization and evaluation of antimicrobial and antioxidant potential. The synthesis of CuNPs-Pl was confirmed by visual inspection of the dark brown residues in the reaction flask and via absorption band around 580nm by UV/Visible spectroscopy. Synthesis process was optimized through investigation of environmental variables. FTIR analysis was carried out for both PIL and CuNPs-Pl which identified the presence of alkanes, alcoholic, and aldehydic groups in the PlL and their encapsulation on the copper surface. The synthesized CuNPs-Pl were found to be spherical and rod shaped, and polydispersed when investigated through SEM study. Similarly, these nanoparticles had monoclinic structure and crystalline nature when analyzed by XRD. Moreover, these nanoparticles showed metallic form when EDX examination was done. Further, biological activities were performed. The synthesized nanoparticles showed considerable inhibition zones against Escherichia coli (12mm), Bacillus subtilis (11mm), Aspergillus niger (10mm), and Schyzophyllum commune (16mm) which depicted their powerful antibacterial and antifungal activity. Likewise, CuNPs-Pl were effeciently able to quench free radicals as indicated from the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and nitric oxide (NO) assays by exhibiting 86.32, 50.45, and 48.23% inhibition respectively. Thus, the contemporary work has substantiated that low cost CuNPs-Pl can be highly proficient alternate or substitute of synthetic formulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-51

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Fatima, M. Priya, L. Indurthi, V. Radhakrishnan and R. Sudhakaran, Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens, Microbial Pathogenesis. 138 (2020) 103780. https://doi.org/10.1016/ j.micpath.2019.103780.

DOI: 10.1016/j.micpath.2019.103780

Google Scholar

[2] P.G. Jamkhande, N.W. Ghule, A.H. Bamer and M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug Delivery Science and Technology. 53 (2019) 101174. https://doi.org/10.1016/ j.jddst.2019.101174.

DOI: 10.1016/j.jddst.2019.101174

Google Scholar

[3] N. Madubuonu, S. O. Aisida, A. Ali, I. Ahmad, T. Zhao, S. Botha, M. Maaza and F.I. Ezema, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, Journal of Photochemistry & Photobiology, B: Biology. 199 (2019) 111601 1-9. https://doi.org/10.1016/j.jphotobiol.2019.111601.

DOI: 10.1016/j.jphotobiol.2019.111601

Google Scholar

[4] V. Ravichandran, S. Vasanthi, S. Shalini, S.A.A. Shah, M. Tripathy and N. Paliwala, Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles, Results in Physics. 15 (2019) 102565. https://doi.org/10.1016/j.rinp.2019.102565.

DOI: 10.1016/j.rinp.2019.102565

Google Scholar

[5] P. Nikolaos, C.E. Matthew and H. Louise, Room temperature bioproduction, isolation and anti-microbial properties of stable elemental copper nanoparticles, New Biotechnology. 40 (2018) 275–281.

DOI: 10.1016/j.nbt.2017.10.002

Google Scholar

[6] M. Luna, R. Zarzuela, M.J. Mosquera, M.L.A. Gil, L.M.C. Aguilera, J.J.D. Jaén, J.M.P. Santander, V.G. Moreno and Y.C. Jimenez, Biosynthesis of uniform ultra-small gold nanoparticles by aged Dracaena Draco L extracts, Colloids and Surfaces A. 581 (2019) 123744. https://doi.org/10.1016/j.colsurfa.2019.123744.

DOI: 10.1016/j.colsurfa.2019.123744

Google Scholar

[7] D. Baruah, M. Goswami, R.N.S. Yadav, A. Yadav and A.M. Das, Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes, Journal of Photochemistry and Photobiology B Biology. 186 (2018) 51–58. https://doi.org/10.1016/ j.jphotobiol.2018.07.002.

DOI: 10.1016/j.jphotobiol.2018.07.002

Google Scholar

[8] K.R. Aadil, N. Pandeyb, S.I. Mussatto and H. Jhad, Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity, Journal of Environmental Chemical Engineering. 7 (2019) 103296 (1-8). https://doi.org/10.1016/j.jece.2019.103296.

DOI: 10.1016/j.jece.2019.103296

Google Scholar

[9] K. Vijayaraghavan, T. Ashokkumar, Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and Applications, Journal of Environmental Chemical Engineering. 5 (2017) 4866–4883. https://doi.org/10.1016/j.jece.2017.09.026.

DOI: 10.1016/j.jece.2017.09.026

Google Scholar

[10] W.L. Shen, Y.Y. Qu, X.F. Pei, S.Z. Li, S.N. You, J.W. Wang, Z.J. Zhang and J.T. Zhou, Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au, Journal of Hazardous Material. 321 (2017) 299–306.

DOI: 10.1016/j.jhazmat.2016.07.051

Google Scholar

[11] S. Pirtarighat, M. Ghannadnia and S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Materials Science & Engineering C. 98 (2019) 250–255. https://doi.org/10.1016/j.msec.2018.12.090.

DOI: 10.1016/j.msec.2018.12.090

Google Scholar

[12] Y.Y. Yu, Q.W. Cheng, C. Sha, Y.X. Chen, S. Naraginti and Y.C. Yong, Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI), Chemical Engineering Journal. 379 (2020) 122404 (1-8). https://doi.org/10.1016/j.cej.2019.122404.

DOI: 10.1016/j.cej.2019.122404

Google Scholar

[13] A.N. Raouf, N.M. Al-Enazi and I.B.M. Ibraheem, Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity, Arabian Journal of Chemistry. 10 (2017) S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

DOI: 10.1016/j.arabjc.2013.11.044

Google Scholar

[14] Z. Bao and C.Q. Lan, Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms—A review, Colloids and Surfaces B: Biointerfaces. 184 (2019) 110519 (1-8). https://doi.org/10.1016/j.colsurfb.2019.110519.

DOI: 10.1016/j.colsurfb.2019.110519

Google Scholar

[15] D. Jini and S. Sharmila, Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity, Materials Today: Proceedings. 22 (2020) 432-438. https://doi.org/10.1016/j.matpr.2019.07.672.

DOI: 10.1016/j.matpr.2019.07.672

Google Scholar

[16] F.O. Kup, S. Çoşkunçay and F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities, Materials Science & Engineering C. 107 (2019) 110207. https://doi.org/10.1016/j.msec.2019.110207.

DOI: 10.1016/j.msec.2019.110207

Google Scholar

[17] M. Manikandakrishnan, S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandossd, R. Manikandane, M. Tabarsaf, S.G. Youb and N.M. Prabhua, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Journal of Drug Delivery Science and Technology. 54 (2019) 101345. https://doi.org/10.1016/j.jddst.2019.101345.

DOI: 10.1016/j.jddst.2019.101345

Google Scholar

[18] M.D. Catarino, A.M.S. Silva and S.M. Cardoso, Phycochemical constituents and biological activities of Fucus spp., Marine Drugs. 16 (2018) 249.

DOI: 10.3390/md16080249

Google Scholar

[19] S.O. Aisida, K. Ugwu and P.A. Akpa, A.C. Nwanya, U. Nwankwo, S.S. Botha, P.M. Ejikeme, I. Ahmad, M. Maaza and F.I. Ezema, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Surfaces and interfaces. 17 (2019) 100359 (1-7). https://doi.org/10.1016/j.matchemphys.2019.121859.

DOI: 10.1016/j.matchemphys.2019.121859

Google Scholar

[20] M. Das and S.S. Smita, Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity, Applied Nanosciences. 8 (2018) 1059-1067. https://doi.org/10.1007/s13204-018-0721-0.

DOI: 10.1007/s13204-018-0721-0

Google Scholar

[21] A.F.V. da Silva, A.P. Fagundes, D.L.P. Macuvele, E.F.U. de Carvalho, M. Durazzo, N. Padoin, C. Soares, H.G Riella, Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties, Colloids and Surfaces A. 583 (2019) 123915 (1-10). https://doi.org/10.1016/j.colsurfa.2019.123915.

DOI: 10.1016/j.colsurfa.2019.123915

Google Scholar

[22] A. Singh, N.B. Singh, I. Hussain, H. Singh, Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis, Journal of Biotechnology. 262 (2017) 11–27. https://doi.org/10.1016/j.jbiotec.2017.09.016.

DOI: 10.1016/j.jbiotec.2017.09.016

Google Scholar

[23] P. Kuppusamy, S. Ilavenil, S. Srigopalram, G.P. Maniam, M.M. Yusoff, N. Govindan and K.C. Choi, Treating of palm oil mill effluent using Commelina nudiflora mediated copper nanoparticles as a novel bio-control agent, Journal of Cleaner Production. 141 (2017) 1023–1029. https://doi.org/10.1016/j.jclepro.2016.09.176.

DOI: 10.1016/j.jclepro.2016.09.176

Google Scholar

[24] Y.S. Liu, Y.C. Chang and H.H. Chen, Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants, Journal of food and drug analysis. 26 (2018) 649–656. https://doi.org/10.1016/j.jfda.2017.07.005.

DOI: 10.1016/j.jfda.2017.07.005

Google Scholar

[25] R.J.B. Pinto, J.M.F. Lucas, P.M. Madalena, S.A.O. Santos, A.J.D. Silvestre, P.A.A.P. Marques and C.S.R. Freire, Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract, Industrial Crops & Products. 105 (2017) 83–92. https://doi.org/10.1016/j.indcrop.2017.05.003.

DOI: 10.1016/j.indcrop.2017.05.003

Google Scholar

[26] R. Prabhakar, S.R. Samadder and Jyotsana, Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation., Journal of Cleaner Production. 168 (2017) 1201–1210. https://doi.org/10.1016/j.jclepro.2017.09.06.

DOI: 10.1016/j.jclepro.2017.09.063

Google Scholar

[27] L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon, S.V.N. Pammi, Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica, Journal of environmental sciences. 55 (2017) 157–163. https://doi.org/10.1016/j.jes.2016.04.027.

DOI: 10.1016/j.jes.2016.04.027

Google Scholar

[28] M. Hamelian, S. Hemmati, K. Varmira and H. Veisi, Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract, Journal of the Taiwan Institute of Chemical Engineers. 93 (2018) 21–30. https://doi.org/10.1016/j.jtice.2018.07.018.

DOI: 10.1016/j.jtice.2018.07.018

Google Scholar

[29] Z. Zaheer, Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract, Journal of Photochemistry & Photobiology, B: Biology. 178 (2018) 584–592. https://doi.org/10.1016/j.jphotobiol.2017.12.002.

DOI: 10.1016/j.jphotobiol.2017.12.002

Google Scholar

[30] A.S. Mohanty and B.S. Jena, Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract, Journal of Colloid and Interface Science. 496 (2017) 513–521.

DOI: 10.1016/j.jcis.2017.02.045

Google Scholar

[31] D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts, Biomedicine & Pharmacotherapy. 89 (2017) 1067–1077.

DOI: 10.1016/j.biopha.2017.02.101

Google Scholar

[32] G.M. Sangaonkar and K.D. Pawar, Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities, Colloids and Surfaces B: Biointerfaces. 164 (2018) 210–217. https://doi.org/10.1016/j.colsurfb.2018.01.044.

DOI: 10.1016/j.colsurfb.2018.01.044

Google Scholar

[33] K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha and P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties, Optik. 154 (2018) 593–600. https://doi.org/10.1016/j.ijleo.2017.10.074.

DOI: 10.1016/j.ijleo.2017.10.074

Google Scholar

[34] N. Nagar and V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves, Materials Chemistry and Physics. 213 (2018) 44–51. https://doi.org/10.1016/j.matchemphys.2018.04.007.

DOI: 10.1016/j.matchemphys.2018.04.007

Google Scholar

[35] A. Rónavári, D. Kovács, N. Igaz, C. Vágvölgyi, I.M. Boros, Z. Kónya, I. Pfeiffer and M. Kiricsi, Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study, International Journal of Nanomedicine. 12 (2017) 871–883.

DOI: 10.2147/ijn.s122842

Google Scholar

[36] S. Rajeshkumar and G. Rinitha, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea Americana seeds, Open Nano. 3 (2018) 18–27. https://doi.org/10.1016/j.onano.2018.03.001.

DOI: 10.1016/j.onano.2018.03.001

Google Scholar

[37] I. Uddin, K. Ahmad, A.A. Khan and M.A. Kazmi, Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor, Sensing and Bio-Sensing Research. 16 (2017) 62–67. https://doi.org/10.1016/j.sbsr.2017.11.005.

DOI: 10.1016/j.sbsr.2017.11.005

Google Scholar

[38] K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha, P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties, Optik. 154 (2018) 593–600. https://doi.org/10.1016/j.ijleo.2017.10.074.

DOI: 10.1016/j.ijleo.2017.10.074

Google Scholar

[39] M.P. Patil, R.D. Singh, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare and G.D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource, Microbial Pathogenesis. 121 (2018) 184–189.

DOI: 10.1016/j.micpath.2018.05.040

Google Scholar

[40] T. Rasheed, M. Bilal, H.M.N. Iqbal and C. Li, Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications, Colloids and Surfaces B: Biointerfaces. 158 (2017) 408–415.

DOI: 10.1016/j.colsurfb.2017.07.020

Google Scholar

[41] N.D. Pham, M.M. Duong, M.V. Le, H.A. Hoang and L.K.O. Pham, Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici, Comptes Rendus Chimie. 22 (2019) 786-793. https://doi.org/10.1016/j.crci.2019.10.007.

DOI: 10.1016/j.crci.2019.10.007

Google Scholar

[42] D. Devipriya and S.M. Roopan, Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus, Materials Science and Engineering C. 80 (2017) 38–44.

DOI: 10.1016/j.msec.2017.05.130

Google Scholar

[43] A. Rajan, A.R. Rajan and D. Philip, Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities, Open Nano. 2 (2017) 1–8. https://doi.org/10.1016/j.onano.2016.11.002.

DOI: 10.1016/j.onano.2016.11.002

Google Scholar

[44] P. Dauthal and M. Mukhopadhyay, Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles, Chinese Journal of Chemical Engineering. 26 (2018) 1200–1208. https://doi.org/10.1016/j.cjche.2017.12.014.

DOI: 10.1016/j.cjche.2017.12.014

Google Scholar

[45] A. Sudha, J. Jeyakanthan and P. Srinivasan, Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Resource Efficient Technologies. 3 (2017) 506–515. https://doi.org/10.1016/j.reffit.2017.07.002.

DOI: 10.1016/j.reffit.2017.07.002

Google Scholar

[46] M. Ponnanikajamideen, S. Rajeshkumar, M. Vanaja and G. Annadurai, In-Vivo Anti-Diabetic and Wound Healing Effect of Antioxidant Gold Nanoparticles Synthesized Using Insulin Plant (Chamaecostus Cuspidatus), Canadian Journal of Diabetes. 43 (2018) 82–89.

DOI: 10.1016/j.jcjd.2018.05.006

Google Scholar