The Synthesis of Pt-CNTs Nanocatalyst Promoted by Visible Light and Catalytic Reduction of 4-Nitrophenol

Article Preview

Abstract:

Photochemistry to prepare platinum nanoparticles (Pt NPs) is an essential way to control Pt NPs catalyst size distribution. This article reports a series of morphologically controlled syntheses of Pt NPs loaded on modified carbon nanotube (Pt-CNTs). In the synthesis, Polyethylene glycol (PEG) participates in reactions both as a reducing agent and a stabilizer. Visible light irradiation was adopted as a kinetic controlling approach. Typical 4-nitrophenol (4-NP) reduction was adopted to probe the catalytic performances. Characterizations prove that visible light irradiation is an effective way to control the reaction process. In the optimized reaction conditions, i.e., when the ratio PEG:H2O is 1:9, and the pH is 10, the as-prepared Pt NPs are consequently in a very narrow sized distribution with an average diameter of 1.29 nm. The Pt-CNTs present a high reaction rate constant of 0.624 min-1 in the catalytic reduction of 4-NP. All the research results are beneficial for exploring more green chemistry and facile photochemical approaches in the controlled preparation of Pt nanocatalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.C. Liu, A. Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev. 118 (2018) 4981-5079.

DOI: 10.1021/acs.chemrev.7b00776

Google Scholar

[2] Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak Shape-Controlled Synthesis of Metal Nan-ocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 47 (2008) 2-46.

DOI: 10.1002/anie.200802248

Google Scholar

[3] B.I. Kharisov, H.V.R Dias, O.V. Kharissova, A. Vázquez, Ultrasmall particles in the cat-alysis, J. Nanopart. Res. 16 (2014) 26-65.

DOI: 10.1007/s11051-014-2665-y

Google Scholar

[4] L. Kacenauskaite, A.A. Swane, J.J. Kain Kirkensgaard, M. Fleige, S. Kunz, T. Vosch, M. Arenz. Synthesis Mechanism and Influence of Light on Unprotected Platinum Nanoparti-cles Synthesis at Room Temperature, Chem. Nano Mat. 2 (2016) 104-107.

DOI: 10.1002/cnma.201500118

Google Scholar

[5] S. Moussa, V. Abdelsayed, M.S. El-Shall, Laser Synthesis of Pt, Pd, CoO and Pd-CoO Nanoparticle Catalysts Supported on Graphene, Chem. Phys. Lett. 510 (2011) 179-184.

DOI: 10.1016/j.cplett.2011.05.026

Google Scholar

[6] H.J. Wang, L. Wang, Y. Nemoto, N. Suzuki, Y. Yamauchi, Microwave-Assisted Rapid S-ynthesis of Platinum Nanoclusters with High Surface Area, J. Nanosci. Nanotechno. 10 (2010) 6489-6494.

DOI: 10.1166/jnn.2010.2517

Google Scholar

[7] L.T. Ye, Z.S. Li, X.F. Zhang, F.L. Lei, S. Lin, One-Step Microwave Synthesis of Pt(Pd)/Cu2O/GNs Composites and Their Electro-Photo-Synergistic Catalytic Properties for Methano-l Oxidation, J. Mater. Chem. A 2 (2014) 21010-21019.

DOI: 10.1039/c4ta05094k

Google Scholar

[8] B. Lim, M.J. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X.M. Lu, Y.M. Zhu, Y.N. Xia, Pd-Pt Bi-metallic Nanodendrites with High Activity for Oxygen Reduction, Science. 40(2010) 1302-1305.

DOI: 10.1126/science.1170377

Google Scholar

[9] H.W. Wei, H.B. Wu, K. Huang, B.H. Ge, J.Y. Ma, J.L. Lang, D. Zu, M. Lei, Y.G. Yao, W. Guo, H. Wu, Ultralow-Temperature Photochemical Synthesis of Atomically Dispersed Pt Catalysts for the Hydrogen Evolution reaction, Chem. Sci. 10 (2019) 2830-2836.

DOI: 10.1039/c8sc04986f

Google Scholar

[10] H. Gu, Y. Yang, J.X. Tian, G.Y. Shi, Photochemical Synthesis of Noble Metal (Ag, Pd, Au, Pt) on Graphene/ZnO Multihybrid Nanoarchitectures as Electrocatalysis for H2O2 Reduction, ACS. Appl. Mater. Inter. 5 (2013) 6762-6768.

DOI: 10.1021/am401738k

Google Scholar

[11] L. Xian, L. Engelbrecht, S. Barkhuysen, K.R. Koch, Room temperature photo-induced deposition of platinum mirrors and nanolayers from simple Pt(II) precursor complexes in water-methanol solutions, RSC. Adv. 6 (2016) 34014-34018.

DOI: 10.1039/c6ra03318k

Google Scholar

[12] A. Draoui, M. Zidour, A. Tounsi, B. Adim, Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT), J Nano Res. 57 (2019) 117-135.

DOI: 10.4028/www.scientific.net/jnanor.57.117

Google Scholar

[13] R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, T.S.A. Hor, Platinum Deposition on Carbon Nanotubes via Chemical Modification, Chem. Mater. 10 (1998) 718-722.

DOI: 10.1021/cm970364z

Google Scholar

[14] Y.N. Wang, Q.C. Li, P. Zhang, D. O'Connor, R.S. Varma, M. Yu, D.Y. Hou, One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol, J. Colloid. Interf. Sci. 539 (2019) 161-167.

DOI: 10.1016/j.jcis.2018.12.053

Google Scholar

[15] A. Jose, K.R.S. Devi, D. Pinheiro, S.L. Narayana, Electrochemical synthesis, photodegr-adation and antibacterial properties of PEG capped zinc oxide nanoparticles, J. Photoch. Photobio. B 187 (2018) 25-34.

DOI: 10.1016/j.jphotobiol.2018.07.022

Google Scholar

[16] K. Seku, B.R. Gangapuram, B. Pejjai, M. Hussain, S.S. Hussaini, N. Golla, K.K. Kadimpati, Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications, Chem. Pap. 73 (2019) 1695-1704.

DOI: 10.1007/s11696-019-00722-z

Google Scholar

[17] V. Alderucci, L. Pino, P.L. Antonucci, W. Roh, J. Cho, H. Kim, D.L. Cocke, V. Antonucci, XPS study of surface oxidation of carbon-supported Pt catalysts, Mater. Chem. Phys. 41 (1995) 9-14.

DOI: 10.1016/0254-0584(95)01497-7

Google Scholar

[18] A. Bharti, G. Cheruvally, Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell, Int. J. Hydrogen. Energ. 43 (2018) 14729-14741.

DOI: 10.1016/j.ijhydene.2018.06.009

Google Scholar

[19] C.C. Nguyen, D.T. Nguyen, T.O. Do, A novel route to synthesize C/Pt/TiO2 phase tun-able anatase-Rutile TiO2 for efficient sunlight-driven photocatalytic applications. Appl. Cata-l. B: Environ 226 (2018) 46-52.

DOI: 10.1016/j.apcatb.2017.12.038

Google Scholar

[20] T. Sun, Z.Y. Zhang, J.W. Xiao, C. Chen, F. Xiao, S. Wang, Y.Q. Liu, Facile and Green Synthesis of Palladium Nanoparticles-Graphene-Carbon Nanotube Material with High Catalytic Activity, Sci. Rep. 3 (2013) 25-27.

DOI: 10.1038/srep02527

Google Scholar

[21] M.N.K. Pajić, S.I. Stevanović, VV. Radmilović, A. Gavrilović-Wohlmuther, VR. Radmilović, SL. Lj Gojković, VM. Jovanović, Shape evolution of carbon supported Pt nanoparticle-s: From synthesis to application, Appl. Catal. B: Environ. 196 (2016) 174-184.

DOI: 10.1016/j.apcatb.2016.05.033

Google Scholar

[22] Y.X. Feng, B.Q. Su, L. Xian, Y.J. Ma, L. Sheng, N.J. Cao, In situ synthesis of surfactant-free Pt nanoparticles supported on multi-walled carbon nanotubes under visible light, Chem. Pap. 74 (2020) 1189-1197.

DOI: 10.1007/s11696-019-00955-y

Google Scholar

[23] A. Kumar, M. Belwal, R.R. Maurya, V. Mohan, V. Vishwanathan, Heterogeneous catal-ytic reduction of anthropogenic pollutant, 4-nitrophenol by Au/AC nanocatalysts, Mater. Sci. Tech-Lond. 2 (2019) 526-531.

DOI: 10.1016/j.mset.2019.05.007

Google Scholar

[24] Q.R. Geng, J.Z. Du, Reduction of 4-nitrophenol catalyzed by silver nanoparticles supp-orted on polymer micelles and vesicles, RSC. Adv. 4 (2014) 16425-16428.

DOI: 10.1039/c4ra01866d

Google Scholar

[25] X.Q. Huang, C.Y. Guo, J.Q. Zuo, N.F. Zheng, G.D. Stucky, An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties, Small. 5 (2009) 361-365.

DOI: 10.1002/smll.200800808

Google Scholar

[26] R.M. Li, Z.Y. Li, Q. Wu, D.F. Li, J.H. Shi, Y.W. Chen, S.L. Yu, T. Ding, C.Z. Qiao, One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction, J. Nanopart. Res. 18(6) (2016) 142.

DOI: 10.1007/s11051-016-3452-8

Google Scholar

[27] J.H. Noh, R. Meijboom, Synthesis and catalytic evaluation of dendrimer-templated and reverse microemulsion Pd and Pt nanoparticles in the reduction of 4-nitrophenol: The effect of size and synthetic methodologies, Appl. Catal. A: gen 497 (2015) 107-120.

DOI: 10.1016/j.apcata.2015.02.039

Google Scholar

[28] Y. Dai, P. Yu, X.J. Zhang, R.X. Zhuo, Gold nanoparticles stabilized by amphiphilic hy-perbranched polymers for catalytic reduction of 4-nitrophenol, J. Catal. 337 (2016) 65-71.

DOI: 10.1016/j.jcat.2016.01.014

Google Scholar

[29] C.M. Zhang, R.Z. Zhang, S.J. He, L. Li, X.D. Wang, M.M. Liu, W. Chen, 4-nitrophe-nol reduction by encaging single PtPd nanocube in nitrogen-doped hollow carbon nanospher-e, Chem. Cat. Chem., 9 (2016) 980-986.

DOI: 10.1002/cctc.201601364

Google Scholar

[30] S. Hussain, N. Kongi, H. Erikson, M. Rähn, M. Merisalu, L. Matisen, P. Paiste, J. Ar-uväli, V. Sammelselg, LA. Estudillo-Wong, K. Tammeveski, N. Alonso-Vante, Platinum nan-oparticles photo-deposited on SnO2-C composites: An active and durable electrocatalyst for the oxygen reduction reaction, Electrochim. Acta. 316 (2019) 162-172.

DOI: 10.1016/j.electacta.2019.05.104

Google Scholar

[31] L.B. Okhlopkova, Properties of Pt/C catalysts prepared by adsorption of anionic precursor and reduction with hydrogen. Influence of acidity of solution, Appl. Catal. A: General. 355(1-2) (2009) 115-122.

DOI: 10.1016/j.apcata.2008.12.006

Google Scholar