[1]
L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater. 9 (1997) 1302–1317.
DOI: 10.1021/cm960441a
Google Scholar
[2]
K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior, Biomacromolecules 4 (2003) 657–665.
DOI: 10.1021/bm020127b
Google Scholar
[3]
Pedro Henrique Cury Camargo, Kestur Gundappa Satyanarayana, Fernando Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Mat. Res. 12 (2009) 1-39.
DOI: 10.1590/s1516-14392009000100002
Google Scholar
[4]
W.E. Jones, J. Chiguma, E. Johnson, A. Pachamuthu, D. Santos, Electrically and thermally conducting nanocomposites for electronic applications, Materials 3 (2010) 1478–1496.
DOI: 10.3390/ma3021478
Google Scholar
[5]
R. Bogue, Nanocomposites: a review of technology and applications, Assembly Automation 31 (2011) 106–112.
Google Scholar
[6]
M. Vinyas, S.J. Athul, D. Harursampath, Mar Loja, T. Nagoyen Thoi, A comprehensive review on analysis of nanocomposite: from manufacturing to properties characterization, Material Research Express, 6 (2019) 092002.
DOI: 10.1088/2053-1591/ab3175
Google Scholar
[7]
Aicha DRAOUI, Mohamed ZIDOUR, Abdelouahed TOUNSI, Belkacem ADIM, Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT), Journal of Nano Research, 57 (2019), 117-135.
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[8]
Minakshi Das, Kyu Hwan Shim, Seong Soo A. An, Dong Kee Yi, Review on gold nanoparticles and their applications, Toxicology and Environmental Health Sciences volume 3, (2011),193–205.
Google Scholar
[9]
Kong, F.-Y.; Zhang, J.-W.; Li, R.-F.; Wang, Z.-X.; Wang, W.-J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22, 1445.
DOI: 10.3390/molecules22091445
Google Scholar
[10]
N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: A review, Talanta, 84 (2018), 537-556.
DOI: 10.1016/j.talanta.2018.02.088
Google Scholar
[11]
Vivek Dhand, Kyong Yop Rhee, Hyun Ju Kim, Dong Ho Jung, A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends, Journal of Nanomaterials (2013) 763953.
DOI: 10.1155/2013/763953
Google Scholar
[12]
A. K. Geim, Graphene: status and prospects,, Science, vol. 324, no. 5934, (2009), 530–1534.
Google Scholar
[13]
N. Chopra, L.G. Bachas, M.R. Knecht, Fabrication and Biofunctionalization of Carbon-Encapsulated Au Nanoparticles, Chemistry of Materials 21(7), (2009) 1176–1178.
DOI: 10.1021/cm803349c
Google Scholar
[14]
K. Turcheniuk, R. Boukherroub and S. Szunerits, Gold–graphene nanocomposites for sensing and biomedical applications, Journal of Materials Chemistry B, 3 (2015), 4301-4324.
DOI: 10.1039/c5tb00511f
Google Scholar
[15]
M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production, Applied Surface Science, 348 (2015) 4–9.
DOI: 10.1016/j.apsusc.2015.01.082
Google Scholar
[16]
Arsène Chemin, Julien Lam, Gaétan Laurens, Florian Trichard, Vincent Motto-Ros, Gilles Ledoux, Vítězslav Jarý, Valentyn Laguta, Martin Nikl, Christophe Dujardin, David Amans, Doping nanoparticles using pulsed laser ablation in a liquid containing the doping agent, Nanoscale Adv., 1, (2019), 3963-3972.
DOI: 10.1039/c9na00223e
Google Scholar
[17]
Hahn A, Barcikowski S, Chichkov B. Influences on nanoparticle production during pulsed laser ablation. JLMN-Journal of Laser Micro/Nanoengineering, 3 (2008), 73-77.
DOI: 10.2961/jlmn.2008.02.0003
Google Scholar
[18]
N. G. Semaltianos, Nanoparticles by Laser Ablation, Critical Reviews in Solid State and Materials Sciences, 35 (2010) 105-124.
DOI: 10.1080/10408431003788233
Google Scholar
[19]
N. Tarasenko. Pulsed Laser Ablation Synthesis and Modification of Composite Nanoparticles in Liquids. Chapter 14 in book Laser Ablation in Liquid: Principles, Methods and Applications in Nanomaterials Preparation and Nanostructures Fabrication, (Ed. G. Yang, Pan Stanford Publishing, 2011).
DOI: 10.1201/b11623-16
Google Scholar
[20]
E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles, Opt. Laser Technol. 58 (2014) 26–32.
DOI: 10.1016/j.optlastec.2013.10.031
Google Scholar
[21]
M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation, J. Cluster Sci. 27 (2016) 127–138.
DOI: 10.1007/s10876-015-0915-5
Google Scholar
[22]
E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water, Bull. Mater. Sci. 39 (2016) 1677–1684.
DOI: 10.1007/s12034-016-1315-7
Google Scholar
[23]
A. Zamiranvari, E. Solati, D. Dorranian, Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation, Opt. Laser Technol 97 (2017) 209–218.
DOI: 10.1016/j.optlastec.2017.06.024
Google Scholar
[24]
E. Ghavidel, D. Doranian, A.H. Sari, Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method, Optics and Laser Technology 103 (2018) 155–162.
DOI: 10.1016/j.optlastec.2018.01.034
Google Scholar
[25]
P. Nasiri, D. Doranian, A.H. Sari, Synthesis of Au/Si nanocomposite using laser ablation method, Optics and Laser Technology 113 (2019) 217–224.
DOI: 10.1016/j.optlastec.2018.12.033
Google Scholar
[26]
I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, Volume 95, Issue 11, (2010), 2126-2146.
DOI: 10.1016/j.polymdegradstab.2010.06.007
Google Scholar
[27]
A. Nimrodh Ananth and S. Umapathy, On the optical and thermal properties of in situ/ex situ reduced Ag NP's/PVA composites and its role as a simple SPR-based protein sensor, AppliedNanoscience, vol.1, no.2,p.87–96, (2011).
DOI: 10.1007/s13204-011-0010-7
Google Scholar
[28]
Xiaozhi Tang, Sajid Alavi, Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability, Carbohydrate Polymers, Volume 85, Issue 1, (2011), 7-16.
DOI: 10.1016/j.carbpol.2011.01.030
Google Scholar
[29]
M Ghanipour, D Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films, JournalofNanomaterials Volume (2013), ArticleID 897043, 10pages.
DOI: 10.1155/2013/897043
Google Scholar
[30]
Damian C. Onwudiwe, Tjaart P.J. Krüger, Oluwafemi S. Oluwatobi, Christien A. Strydom, Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system, Applied Surface Science, 290, (2014), 18-26.
DOI: 10.1016/j.apsusc.2013.10.165
Google Scholar
[31]
M. Halajan, M.J. Torkamany, D. Dorranian, Effects of the ZnSe concentration on the structural and optical properties of ZnSe/PVA nanocomposite thin film, Journal of Physics and Chemistry of Solids, 75 (11), (2014) 187-1193.
DOI: 10.1016/j.jpcs.2014.05.007
Google Scholar
[32]
T. Ghambari, D. Dorranian, Size effect of Au nanoparticles on the electrical and optical properties of PVA thin film, Journal of Nanoelectronics and Optoelectronics 9 (6), (2015), 801–810.
DOI: 10.1166/jno.2014.1683
Google Scholar
[33]
Rade Surudžić, Ana Janković, Miodrag Mitrić, Ivana Matić, Zorica D. Juranić, Ljiljana Živković, Vesna Mišković-Stanković, Kyong Yop Rhee, Soo Jin Park, David Hui, The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites, Journal of Industrial and Engineering Chemistry, 34 (2016) 250-257.
DOI: 10.1016/j.jiec.2015.11.016
Google Scholar
[34]
V Ghorbani, M Ghanipour, D Dorranian, Effect of TiO2/Au nanocomposite on the optical properties of PVA film, Optical and Quantum Electronics 48 (1), (2016) 61.
DOI: 10.1007/s11082-015-0335-7
Google Scholar
[35]
I.S. Elashmawi, A.A. Menazea, Different time's Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization, Journal of Materials Research and Technology, 8(2), (2019), 1944-1951.
DOI: 10.1016/j.jmrt.2019.01.011
Google Scholar
[36]
R. Alipour, A. Khorshidi, A. Fallah Shojaei, F. Mashayekhi, M.J. Mehdipour Moghaddam, Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers, Polymer Testing, 79, (2019), 106022.
DOI: 10.1016/j.polymertesting.2019.106022
Google Scholar
[37]
Ravi Kumar,Meena, Rajiv Kumar, Annu Sharma, Sanjeev Aggarwal, Modifications in optical parameters of PVA by embedded Au-Ag core-shell nanoparticles, AIP Conference Proceedings 2093, 020006 (2019).
DOI: 10.1063/1.5097075
Google Scholar
[38]
M. Mahmoudi, A. Simchi, M Imani, A.S. Milani, P. Stroeve, Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging, J. Phys. Chem. B, 112 (46), (2008), 14470–81.
DOI: 10.1021/jp803016n
Google Scholar
[39]
A. Nimrodh Ananth and S. Umapathy, On the optical and thermal properties of in situ/ex situ reduced Ag NP's/PVA composites and its role as a simple SPR-based protein sensor, Applied Nanoscience, 1(2), (2011) 87–96.
DOI: 10.1007/s13204-011-0010-7
Google Scholar
[40]
Hongkun Huang, Jiancheng Lai, Jian Lu, Zhenhua L, Pulsed laser ablation of bulk target and particleproducts in liquid for nanomaterial fabrication, AIP Advances 9, 015307 (2019).
DOI: 10.1063/1.5082695
Google Scholar
[41]
N. Najafianpour, D Dorranian, Properties of graphene/Au nanocomposite prepared by laser irradiation of the mixture of individual colloids, Applied Physics A, 124 (12), (2018) 805.
DOI: 10.1007/s00339-018-2236-7
Google Scholar
[42]
A. S. Kutsenko and V. M. Granchak, Photochemical synthesis of silver nanoparticles in polyvinyl alcohol matrices, Theoretical and Experimental Chemistry, 45 (5), (2009) 313–318.
DOI: 10.1007/s11237-009-9099-0
Google Scholar
[43]
J. Tauc and R. Grigorovici, Optical properties and electronic structure of amorphous germanium,, Physica Status Solidi (B), 15 (2), (1966), 627–637.
DOI: 10.1002/pssb.19660150224
Google Scholar
[44]
J. Rozra, I. Saini, A. Sharma, Cu nanoparticles induced structural, optical and electrical modification in PVA, Materials Chemistry and Physics, 134, (2012) 1121–1126.
DOI: 10.1016/j.matchemphys.2012.04.004
Google Scholar
[45]
M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films, Physica B, 406, (2011) 1300–1307.
DOI: 10.1016/j.physb.2011.01.021
Google Scholar
[46]
P. K. Khanna, R. Gokhale, V. V. V. S. Subbarao, A. K. Vishwanath, B. K. Das, and C. V. V. Satyanarayana, PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent, Materials Chemistry and Physics, 92 (2005) 229–233.
DOI: 10.1016/j.matchemphys.2005.01.016
Google Scholar
[47]
C. Kittle, Introduction to Solid State Physics, vol. 405, JohnWiley & Sons, New York, NY, USA, (1971).
Google Scholar
[48]
M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films, Physica B, vol. 406, no. 6-7, p.1300–1307, (2011).
DOI: 10.1016/j.physb.2011.01.021
Google Scholar