Optical Properties of PVA Films Doped with Gold-Graphene Nanocomposite Synthesized by Pulsed Laser Ablation

Article Preview

Abstract:

In this research optical properties of synthesized gold-graphene/polyvinyl alcohol (AuG/PVA) nanocomposite have been investigated. Gold and graphene nano colloidal solution (NCS) synthesized by laser ablation method individually. The resulting NCS were characterized by UV-Vis absorption spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). PVA/Au and PVA/AuG with different concentration of AuG were mixed to form polymeric films via solution casting. Doped polymeric films were analyzed by FTIR and spectrophotometer analyses. The results show that by increasing of AuG concentration, the band gap energy of the PVA films significantly enhanced and other optical parameters such as refraction and extinction coefficients remarkably changed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-137

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater. 9 (1997) 1302–1317.

DOI: 10.1021/cm960441a

Google Scholar

[2] K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior, Biomacromolecules 4 (2003) 657–665.

DOI: 10.1021/bm020127b

Google Scholar

[3] Pedro Henrique Cury Camargo, Kestur Gundappa Satyanarayana, Fernando Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities, Mat. Res. 12 (2009) 1-39.

DOI: 10.1590/s1516-14392009000100002

Google Scholar

[4] W.E. Jones, J. Chiguma, E. Johnson, A. Pachamuthu, D. Santos, Electrically and thermally conducting nanocomposites for electronic applications, Materials 3 (2010) 1478–1496.

DOI: 10.3390/ma3021478

Google Scholar

[5] R. Bogue, Nanocomposites: a review of technology and applications, Assembly Automation 31 (2011) 106–112.

Google Scholar

[6] M. Vinyas, S.J. Athul, D. Harursampath, Mar Loja, T. Nagoyen Thoi, A comprehensive review on analysis of nanocomposite: from manufacturing to properties characterization, Material Research Express, 6 (2019) 092002.

DOI: 10.1088/2053-1591/ab3175

Google Scholar

[7] Aicha DRAOUI, Mohamed ZIDOUR, Abdelouahed TOUNSI, Belkacem ADIM, Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT), Journal of Nano Research, 57 (2019), 117-135.

DOI: 10.4028/www.scientific.net/jnanor.57.117

Google Scholar

[8] Minakshi Das, Kyu Hwan Shim, Seong Soo A. An, Dong Kee Yi, Review on gold nanoparticles and their applications, Toxicology and Environmental Health Sciences volume 3, (2011),193–205.

Google Scholar

[9] Kong, F.-Y.; Zhang, J.-W.; Li, R.-F.; Wang, Z.-X.; Wang, W.-J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22, 1445.

DOI: 10.3390/molecules22091445

Google Scholar

[10] N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: A review, Talanta, 84 (2018), 537-556.

DOI: 10.1016/j.talanta.2018.02.088

Google Scholar

[11] Vivek Dhand, Kyong Yop Rhee, Hyun Ju Kim, Dong Ho Jung, A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends, Journal of Nanomaterials (2013) 763953.

DOI: 10.1155/2013/763953

Google Scholar

[12] A. K. Geim, Graphene: status and prospects,, Science, vol. 324, no. 5934, (2009), 530–1534.

Google Scholar

[13] N. Chopra, L.G. Bachas, M.R. Knecht, Fabrication and Biofunctionalization of Carbon-Encapsulated Au Nanoparticles, Chemistry of Materials 21(7), (2009) 1176–1178.

DOI: 10.1021/cm803349c

Google Scholar

[14] K. Turcheniuk, R. Boukherroub and S. Szunerits, Gold–graphene nanocomposites for sensing and biomedical applications, Journal of Materials Chemistry B, 3 (2015), 4301-4324.

DOI: 10.1039/c5tb00511f

Google Scholar

[15] M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production, Applied Surface Science, 348 (2015) 4–9.

DOI: 10.1016/j.apsusc.2015.01.082

Google Scholar

[16] Arsène Chemin, Julien Lam, Gaétan Laurens, Florian Trichard, Vincent Motto-Ros, Gilles Ledoux, Vítězslav Jarý, Valentyn Laguta, Martin Nikl, Christophe Dujardin, David Amans, Doping nanoparticles using pulsed laser ablation in a liquid containing the doping agent, Nanoscale Adv., 1, (2019), 3963-3972.

DOI: 10.1039/c9na00223e

Google Scholar

[17] Hahn A, Barcikowski S, Chichkov B. Influences on nanoparticle production during pulsed laser ablation. JLMN-Journal of Laser Micro/Nanoengineering, 3 (2008), 73-77.

DOI: 10.2961/jlmn.2008.02.0003

Google Scholar

[18] N. G. Semaltianos, Nanoparticles by Laser Ablation, Critical Reviews in Solid State and Materials Sciences, 35 (2010) 105-124.

DOI: 10.1080/10408431003788233

Google Scholar

[19] N. Tarasenko. Pulsed Laser Ablation Synthesis and Modification of Composite Nanoparticles in Liquids. Chapter 14 in book Laser Ablation in Liquid: Principles, Methods and Applications in Nanomaterials Preparation and Nanostructures Fabrication, (Ed. G. Yang, Pan Stanford Publishing, 2011).

DOI: 10.1201/b11623-16

Google Scholar

[20] E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles, Opt. Laser Technol. 58 (2014) 26–32.

DOI: 10.1016/j.optlastec.2013.10.031

Google Scholar

[21] M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation, J. Cluster Sci. 27 (2016) 127–138.

DOI: 10.1007/s10876-015-0915-5

Google Scholar

[22] E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water, Bull. Mater. Sci. 39 (2016) 1677–1684.

DOI: 10.1007/s12034-016-1315-7

Google Scholar

[23] A. Zamiranvari, E. Solati, D. Dorranian, Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation, Opt. Laser Technol 97 (2017) 209–218.

DOI: 10.1016/j.optlastec.2017.06.024

Google Scholar

[24] E. Ghavidel, D. Doranian, A.H. Sari, Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method, Optics and Laser Technology 103 (2018) 155–162.

DOI: 10.1016/j.optlastec.2018.01.034

Google Scholar

[25] P. Nasiri, D. Doranian, A.H. Sari, Synthesis of Au/Si nanocomposite using laser ablation method, Optics and Laser Technology 113 (2019) 217–224.

DOI: 10.1016/j.optlastec.2018.12.033

Google Scholar

[26] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degradation and Stability, Volume 95, Issue 11, (2010), 2126-2146.

DOI: 10.1016/j.polymdegradstab.2010.06.007

Google Scholar

[27] A. Nimrodh Ananth and S. Umapathy, On the optical and thermal properties of in situ/ex situ reduced Ag NP's/PVA composites and its role as a simple SPR-based protein sensor, AppliedNanoscience, vol.1, no.2,p.87–96, (2011).

DOI: 10.1007/s13204-011-0010-7

Google Scholar

[28] Xiaozhi Tang, Sajid Alavi, Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability, Carbohydrate Polymers, Volume 85, Issue 1, (2011), 7-16.

DOI: 10.1016/j.carbpol.2011.01.030

Google Scholar

[29] M Ghanipour, D Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films, JournalofNanomaterials Volume (2013), ArticleID 897043, 10pages.

DOI: 10.1155/2013/897043

Google Scholar

[30] Damian C. Onwudiwe, Tjaart P.J. Krüger, Oluwafemi S. Oluwatobi, Christien A. Strydom, Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system, Applied Surface Science, 290, (2014), 18-26.

DOI: 10.1016/j.apsusc.2013.10.165

Google Scholar

[31] M. Halajan, M.J. Torkamany, D. Dorranian, Effects of the ZnSe concentration on the structural and optical properties of ZnSe/PVA nanocomposite thin film, Journal of Physics and Chemistry of Solids, 75 (11), (2014) 187-1193.

DOI: 10.1016/j.jpcs.2014.05.007

Google Scholar

[32] T. Ghambari, D. Dorranian, Size effect of Au nanoparticles on the electrical and optical properties of PVA thin film, Journal of Nanoelectronics and Optoelectronics 9 (6), (2015), 801–810.

DOI: 10.1166/jno.2014.1683

Google Scholar

[33] Rade Surudžić, Ana Janković, Miodrag Mitrić, Ivana Matić, Zorica D. Juranić, Ljiljana Živković, Vesna Mišković-Stanković, Kyong Yop Rhee, Soo Jin Park, David Hui, The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites, Journal of Industrial and Engineering Chemistry, 34 (2016) 250-257.

DOI: 10.1016/j.jiec.2015.11.016

Google Scholar

[34] V Ghorbani, M Ghanipour, D Dorranian, Effect of TiO2/Au nanocomposite on the optical properties of PVA film, Optical and Quantum Electronics 48 (1), (2016) 61.

DOI: 10.1007/s11082-015-0335-7

Google Scholar

[35] I.S. Elashmawi, A.A. Menazea, Different time's Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization, Journal of Materials Research and Technology, 8(2), (2019), 1944-1951.

DOI: 10.1016/j.jmrt.2019.01.011

Google Scholar

[36] R. Alipour, A. Khorshidi, A. Fallah Shojaei, F. Mashayekhi, M.J. Mehdipour Moghaddam, Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers, Polymer Testing, 79, (2019), 106022.

DOI: 10.1016/j.polymertesting.2019.106022

Google Scholar

[37] Ravi Kumar,Meena, Rajiv Kumar, Annu Sharma, Sanjeev Aggarwal, Modifications in optical parameters of PVA by embedded Au-Ag core-shell nanoparticles, AIP Conference Proceedings 2093, 020006 (2019).

DOI: 10.1063/1.5097075

Google Scholar

[38] M. Mahmoudi, A. Simchi, M Imani, A.S. Milani, P. Stroeve, Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging, J. Phys. Chem. B, 112 (46), (2008), 14470–81.

DOI: 10.1021/jp803016n

Google Scholar

[39] A. Nimrodh Ananth and S. Umapathy, On the optical and thermal properties of in situ/ex situ reduced Ag NP's/PVA composites and its role as a simple SPR-based protein sensor, Applied Nanoscience, 1(2), (2011) 87–96.

DOI: 10.1007/s13204-011-0010-7

Google Scholar

[40] Hongkun Huang, Jiancheng Lai, Jian Lu, Zhenhua L, Pulsed laser ablation of bulk target and particleproducts in liquid for nanomaterial fabrication, AIP Advances 9, 015307 (2019).

DOI: 10.1063/1.5082695

Google Scholar

[41] N. Najafianpour, D Dorranian, Properties of graphene/Au nanocomposite prepared by laser irradiation of the mixture of individual colloids, Applied Physics A, 124 (12), (2018) 805.

DOI: 10.1007/s00339-018-2236-7

Google Scholar

[42] A. S. Kutsenko and V. M. Granchak, Photochemical synthesis of silver nanoparticles in polyvinyl alcohol matrices, Theoretical and Experimental Chemistry, 45 (5), (2009) 313–318.

DOI: 10.1007/s11237-009-9099-0

Google Scholar

[43] J. Tauc and R. Grigorovici, Optical properties and electronic structure of amorphous germanium,, Physica Status Solidi (B), 15 (2), (1966), 627–637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[44] J. Rozra, I. Saini, A. Sharma, Cu nanoparticles induced structural, optical and electrical modification in PVA, Materials Chemistry and Physics, 134, (2012) 1121–1126.

DOI: 10.1016/j.matchemphys.2012.04.004

Google Scholar

[45] M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films, Physica B, 406, (2011) 1300–1307.

DOI: 10.1016/j.physb.2011.01.021

Google Scholar

[46] P. K. Khanna, R. Gokhale, V. V. V. S. Subbarao, A. K. Vishwanath, B. K. Das, and C. V. V. Satyanarayana, PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent, Materials Chemistry and Physics, 92 (2005) 229–233.

DOI: 10.1016/j.matchemphys.2005.01.016

Google Scholar

[47] C. Kittle, Introduction to Solid State Physics, vol. 405, JohnWiley & Sons, New York, NY, USA, (1971).

Google Scholar

[48] M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films, Physica B, vol. 406, no. 6-7, p.1300–1307, (2011).

DOI: 10.1016/j.physb.2011.01.021

Google Scholar