[1]
Y. Fukumori, H. Ichikawa, Nanoparticles for cancer therapy and diagnosis, Adv. Powder Technol. 17 (2006) 1–28.
DOI: 10.1163/156855206775123494
Google Scholar
[2]
D. Chang, M. Lim, J.A.C.M. Goos, R. Qiao, Y.Y. Ng, F.M. Mansfeld, M. Jackson, T.P. Davis, M. Kavallaris, Biologically targeted magnetic hyperthermia: Potential and limitations, Front. Pharmacol. 9 (2018).
DOI: 10.3389/fphar.2018.00831
Google Scholar
[3]
R.C. and T.P. Helena Gavilán, Sahitya Kumar Avugadda, Tamara Fernández-Cabada, Nisarg Soni, Marco Cassani, Binh T. Mai, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chem. Soc. Rev. 50 (2021) 11614–11667. https://doi.org/.
DOI: 10.1039/D1CS00427A
Google Scholar
[4]
M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev. 41 (2012) 4306–4334.
DOI: 10.1039/c2cs15337h
Google Scholar
[5]
S.D. and R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, Int J Hyperth. 29 (2013) 790–800.
DOI: 10.3109/02656736.2013.822993
Google Scholar
[6]
G.N. de A. Rego, J.B. Mamani, T.K.F. Souza, M.P. Nucci, H.R. da Silva, L.F. Gamarra, Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model, Einstein (Sao Paulo). 17 (2019) eAO4786.
DOI: 10.31744/einstein_journal/2019AO4786
Google Scholar
[7]
ShorifAhmed, Bablu LalRajak, ManashjitGogoi, Haladhar DevSarma, Chapter 16 - Magnetic nanoparticles mediated cancer hyperthermia, in: Smart Healthc. Dis. Diagnosis Prev., Academic press, 2020: p.153–173. https://doi.org/.
DOI: 10.1016/B978-0-12-817913-0.00016-X
Google Scholar
[8]
A.R. Yasemian, M. Almasi Kashi, A. Ramazani, Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe 3 O 4 ) nanoparticles at different reaction temperatures, Mater. Chem. Phys. 230 (2019) 9–16.
DOI: 10.1016/j.matchemphys.2019.03.032
Google Scholar
[9]
C. Xu, S. Sun, New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65 (2013) 732–743.
DOI: 10.1016/j.addr.2012.10.008
Google Scholar
[10]
R. Epherre, C. Pepin, N. Penin, E. Duguet, S. Mornet, E. Pollert, G. Goglio, Evidence of non-stoichiometry effects in nanometric manganite perovskites: Influence on the magnetic ordering temperature, J. Mater. Chem. 21 (2011) 14990–14998.
DOI: 10.1039/c1jm12137e
Google Scholar
[11]
C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 789–808.
DOI: 10.1016/j.addr.2011.03.008
Google Scholar
[12]
H. Das, A. Inukai, N. Debnath, T. Kawaguchi, N. Sakamoto, S.M. Hoque, H. Aono, K. Shinozaki, H. Suzuki, N. Wakiya, Influence of crystallite size on the magnetic and heat generation properties of La0.77Sr0.23MnO3 nanoparticles for hyperthermia applications, J. Phys. Chem. Solids. 112 (2018) 179–184.
DOI: 10.1016/j.jpcs.2017.09.030
Google Scholar
[13]
G. Channagoudra, S. Gupta, V. Dayal, Study of structural, transport and magneto-crystalline anisotropy in La1-xSrxMnO3(0.30 ≤ x ≤ 0.40) perovskite manganites, AIP Adv. 11 (2021) 1–6.
DOI: 10.1063/9.0000119
Google Scholar
[14]
E. Natividad, M. Castro, G. Goglio, I. Andreu, R. Epherre, E. Duguet, A. Mediano, New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale. 4 (2012) 3954–3962.
DOI: 10.1039/c2nr30667k
Google Scholar
[15]
A. V. Bodnaruk, V.M. Kalita, M.M. Kulyk, S.M. Ryabchenko, A.I. Tovstolytkin, S.O. Solopan, A.G. Belous, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter. 31 (2019).
DOI: 10.1088/1361-648X/ab26fa
Google Scholar
[16]
N.D. Thorat, S. V. Otari, R.A. Bohara, H.M. Yadav, V.M. Khot, A.B. Salunkhe, M.R. Phdatre, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation, Mater. Sci. Eng. C. 42 (2014) 637–646.
DOI: 10.1016/j.msec.2014.06.016
Google Scholar
[17]
S. V. Jadhav, D.S. Nikam, V.M. Khot, N.D. Thorat, M.R. Phadatare, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia, New J. Chem. 37 (2013) 3121–3130.
DOI: 10.1039/c3nj00554b
Google Scholar
[18]
P.N.G. Ibrahim, F.F. Hanna, A.E. Hannora, Structural, electrical and magnetic properties of perovskite La0.4Sr0.6MnO3 prepared by mechanochemical synthesis technique, J. Mater. Sci. Mater. Electron. 33 (2022) 828–840.
DOI: 10.1007/s10854-021-07353-9
Google Scholar
[19]
R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatz, G. Goglio, Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: About the suitability of an aqueous combustion synthesis route, J. Mater. Chem. 21 (2011) 4393–4401.
DOI: 10.1039/c0jm03963b
Google Scholar
[20]
K.Y. Pan, A.H. Shaari, S.K. Chen, L.K. Pah, M. Navasery, M.M.A. Kechik, Effect of Sintering Temperature on Structural, Electrical and Magnetic Properties of La0.7Sr0.3MnO3, Adv. Mater. Res. 1107 (2015) 283–288.
DOI: 10.4028/www.scientific.net/amr.1107.283
Google Scholar
[21]
S.S. Kekade, P.A. Yadav, B.R. Thombare, P.R. Dusane, D.M. Phase, R.J. Choudhari, S.I. Patil, Effect of sintering temperature on electronic properties of nanocrystalline La0.7Sr0.3MnO3, Mater. Res. Express. 6 (2019) 0–9.
DOI: 10.1088/2053-1591/ab2f27
Google Scholar
[22]
N. Giri, R.K. Natarajan, S. Gunasekaran, S. Shreemathi, C NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles, Arch. Appl. Sci. Res. 3 (2011) 624–630.
Google Scholar
[23]
N.D. Thorat, V.M. Khot, A.B. Salunkhe, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications, J. Phys. D. Appl. Phys. 46 (2013).
DOI: 10.1088/0022-3727/46/10/105003
Google Scholar
[24]
Y. Chen, Y. Wang, X. Liu, M. Lu, J. Cao, T. Wang, LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia, Nanoscale Res. Lett. 11 (2016) 4–9.
DOI: 10.1186/s11671-016-1756-3
Google Scholar
[25]
S. V. Jadhav, D.S. Nikam, V.M. Khot, S.S. Mali, C.K. Hong, S.H. Pawar, PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application, Mater. Charact. 102 (2015) 209–220.
DOI: 10.1016/j.matchar.2015.03.001
Google Scholar
[26]
S.S. Cullity BD, No Title, in: Elem. X-Ray Diffr., 3rd edn, Addison-Wesley Publishing Company Inc., USA, 2002.
Google Scholar
[27]
R. Haghniaz, R.D. Umrani, K.M. Paknikar, Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: In vitro studies, Int. J. Nanomedicine. 10 (2015) 1609–1623.
DOI: 10.2147/IJN.S78167
Google Scholar
[28]
K. McBride, J. Cook, S. Gray, S. Felton, L. Stella, D. Poulidi, Evaluation of La1-xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol-gel method as mediators for magnetic fluid hyperthermia, CrystEngComm. 18 (2016) 407–416.
DOI: 10.1039/c5ce01890k
Google Scholar
[29]
M.C. Ferreira, B. Pimentel, V. Andrade, V. Zverev, R.R. Gimaev, A.S. Pomorov, A. Pyatakov, Y. Alekhina, A. Komlev, L. Makarova, N. Perov, M.S. Reis, Understanding the dependence of nanoparticles magnetothermal properties on their size for hyperthermia applications: A case study for la-sr manganites, Nanomaterials. 11 (2021).
DOI: 10.3390/nano11071826
Google Scholar
[30]
M. Knobel, W.C. Nunes, A.L. Brandl, J.M. Vargas, L.M. Socolovsky, D. Zanchet, Interaction effects in magnetic granular systems, Phys. B Condens. Matter. 354 (2004) 80–87.
DOI: 10.1016/j.physb.2004.09.024
Google Scholar
[31]
N. Kaur, B. Chudasama, Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids, J. Magn. Magn. Mater. 451 (2018) 647–653.
DOI: 10.1016/j.jmmm.2017.11.087
Google Scholar
[32]
M.B. Stearns, Y. Cheng, Determination of para- and ferromagnetic components of magnetization and magnetoresistance of granular Co/Ag films (invited), J. Appl. Phys. 75 (1994) 6894–6899.
DOI: 10.1063/1.356773
Google Scholar
[33]
E. Ferrari, F. da Silva, M. Knobel, Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 56 (1997) 6086–6093.
DOI: 10.1103/PhysRevB.56.6086
Google Scholar
[34]
J.C. Cezar, M. Knobel, H.C.N. Tolentino, Magnetic properties of Cu-Permalloy granular alloy, J. Magn. Magn. Mater. 226–230 (2001) 1519–1521.
DOI: 10.1016/S0304-8853(00)00944-6
Google Scholar
[35]
P.K. Yap, A.H. Shaari, H. Baqiah, C.S. Kien, J. Hassan, M.M.A. Kechik, L.K. Pah, Z.A. Talib, Growth and magnetic behaviours of La 0.7 Sr 0.3 MnO 3 nanoparticles synthesized via thermal treatment method, Sains Malaysiana. 48 (2019) 369–375.
DOI: 10.17576/jsm-2019-4802-14
Google Scholar
[36]
D. Kouzoudis, G. Samourgkanidis, A. Kolokithas-Ntoukas, G. Zoppellaro, K. Spiliotopoulos, Magnetic Hyperthermia in the 400–1,100 kHz Frequency Range Using MIONs of Condensed Colloidal Nanocrystal Clusters, Front. Mater. 8 (2021) 1–11.
DOI: 10.3389/fmats.2021.638019
Google Scholar
[37]
M. Lévy, C. Wilhelm, J.M. Siaugue, O. Horner, J.C. Bacri, F. Gazeau, Magnetically induced hyperthermia: Size-dependent heating power of γ-Fe2O3 nanoparticles, J. Phys. Condens. Matter. 20 (2008).
DOI: 10.1088/0953-8984/20/20/204133
Google Scholar
[38]
Caizer Costica, Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia., Nanomaterials. 11 (2021) 5505.
DOI: 10.3390/app11125505
Google Scholar
[39]
U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia, Med. Phys. 31 (2004) 1444–1451.
DOI: 10.1118/1.1748629
Google Scholar