Magnetic Hyperthermia of Polyvinylpyrrolidone Coated La0.6Sr0.4MnO3 Nanoparticles Synthesized by Sol-Gel Auto Combust Method

Article Preview

Abstract:

Lanthanum strontium manganite (La0.6Sr0.4MnO3) nanoparticles have been synthesized by sol-gel auto combustion method. Four sets of LSMO nanoparticles have been synthesized by varying the reaction pH from 10 to 13. LSMO nanoparticles were further functionalized with Polyvinylpyrrolidone (PVP). Structural properties of LSMO nanoparticles were determined by powder X-ray diffraction. Rietveld refinement of diffractograms revealed that irrespective of synthesis conditions, LSMO nanoparticles were synthesized with rhombohedral and orthorhombic crystal phases. Magnetic properties (saturation magnetization, domain magnetization and Curie temperature) of LSMO nanoparticles have been determined by vibration sample magnetometer. Synthesized LSMO nanoparticles are soft ferromagnetic and possesses Curie temperature in between 360 – 370 K. Their saturation magnetization increases with increases in reaction pH, which is in good agreement with the corresponding increase in their rhombohedral phase fraction. PVP coated LSMO nanoparticles when exposed to AC magnetic field produces magnetic hyperthermia temperature (45 °C) within 10 minutes of exposure. Hyperthermia efficiency of LSMO nanoparticles measured in terms of specific loss power (SLP) increases with magnetic field frequency and field strength and it decreases with nanoparticle concentration. LSMO nanoparticles synthesized at pH 10, 11 and 12 are suitable for the magnetic hyperthermia therapy of cancer while the one synthesized at pH 13 is not suitable for magnetic hyperthermia as it could not produce the requisite temperature of 45 °C needed to induce cell apoptosis in in-vivo experiments. Highest hyperthermia efficiency (15.69 W/g) was observed for PVP coated LSMO nanoparticles (concentration: 12.5 mg/mL) synthesized at pH 10 when exposed to an AC magnetic field of strength 10 mT and field frequency of 935.6 KHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-46

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Fukumori, H. Ichikawa, Nanoparticles for cancer therapy and diagnosis, Adv. Powder Technol. 17 (2006) 1–28.

DOI: 10.1163/156855206775123494

Google Scholar

[2] D. Chang, M. Lim, J.A.C.M. Goos, R. Qiao, Y.Y. Ng, F.M. Mansfeld, M. Jackson, T.P. Davis, M. Kavallaris, Biologically targeted magnetic hyperthermia: Potential and limitations, Front. Pharmacol. 9 (2018).

DOI: 10.3389/fphar.2018.00831

Google Scholar

[3] R.C. and T.P. Helena Gavilán, Sahitya Kumar Avugadda, Tamara Fernández-Cabada, Nisarg Soni, Marco Cassani, Binh T. Mai, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chem. Soc. Rev. 50 (2021) 11614–11667. https://doi.org/.

DOI: 10.1039/D1CS00427A

Google Scholar

[4] M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev. 41 (2012) 4306–4334.

DOI: 10.1039/c2cs15337h

Google Scholar

[5] S.D. and R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, Int J Hyperth. 29 (2013) 790–800.

DOI: 10.3109/02656736.2013.822993

Google Scholar

[6] G.N. de A. Rego, J.B. Mamani, T.K.F. Souza, M.P. Nucci, H.R. da Silva, L.F. Gamarra, Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model, Einstein (Sao Paulo). 17 (2019) eAO4786.

DOI: 10.31744/einstein_journal/2019AO4786

Google Scholar

[7] ShorifAhmed, Bablu LalRajak, ManashjitGogoi, Haladhar DevSarma, Chapter 16 - Magnetic nanoparticles mediated cancer hyperthermia, in: Smart Healthc. Dis. Diagnosis Prev., Academic press, 2020: p.153–173. https://doi.org/.

DOI: 10.1016/B978-0-12-817913-0.00016-X

Google Scholar

[8] A.R. Yasemian, M. Almasi Kashi, A. Ramazani, Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe 3 O 4 ) nanoparticles at different reaction temperatures, Mater. Chem. Phys. 230 (2019) 9–16.

DOI: 10.1016/j.matchemphys.2019.03.032

Google Scholar

[9] C. Xu, S. Sun, New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65 (2013) 732–743.

DOI: 10.1016/j.addr.2012.10.008

Google Scholar

[10] R. Epherre, C. Pepin, N. Penin, E. Duguet, S. Mornet, E. Pollert, G. Goglio, Evidence of non-stoichiometry effects in nanometric manganite perovskites: Influence on the magnetic ordering temperature, J. Mater. Chem. 21 (2011) 14990–14998.

DOI: 10.1039/c1jm12137e

Google Scholar

[11] C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63 (2011) 789–808.

DOI: 10.1016/j.addr.2011.03.008

Google Scholar

[12] H. Das, A. Inukai, N. Debnath, T. Kawaguchi, N. Sakamoto, S.M. Hoque, H. Aono, K. Shinozaki, H. Suzuki, N. Wakiya, Influence of crystallite size on the magnetic and heat generation properties of La0.77Sr0.23MnO3 nanoparticles for hyperthermia applications, J. Phys. Chem. Solids. 112 (2018) 179–184.

DOI: 10.1016/j.jpcs.2017.09.030

Google Scholar

[13] G. Channagoudra, S. Gupta, V. Dayal, Study of structural, transport and magneto-crystalline anisotropy in La1-xSrxMnO3(0.30 ≤ x ≤ 0.40) perovskite manganites, AIP Adv. 11 (2021) 1–6.

DOI: 10.1063/9.0000119

Google Scholar

[14] E. Natividad, M. Castro, G. Goglio, I. Andreu, R. Epherre, E. Duguet, A. Mediano, New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale. 4 (2012) 3954–3962.

DOI: 10.1039/c2nr30667k

Google Scholar

[15] A. V. Bodnaruk, V.M. Kalita, M.M. Kulyk, S.M. Ryabchenko, A.I. Tovstolytkin, S.O. Solopan, A.G. Belous, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter. 31 (2019).

DOI: 10.1088/1361-648X/ab26fa

Google Scholar

[16] N.D. Thorat, S. V. Otari, R.A. Bohara, H.M. Yadav, V.M. Khot, A.B. Salunkhe, M.R. Phdatre, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation, Mater. Sci. Eng. C. 42 (2014) 637–646.

DOI: 10.1016/j.msec.2014.06.016

Google Scholar

[17] S. V. Jadhav, D.S. Nikam, V.M. Khot, N.D. Thorat, M.R. Phadatare, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia, New J. Chem. 37 (2013) 3121–3130.

DOI: 10.1039/c3nj00554b

Google Scholar

[18] P.N.G. Ibrahim, F.F. Hanna, A.E. Hannora, Structural, electrical and magnetic properties of perovskite La0.4Sr0.6MnO3 prepared by mechanochemical synthesis technique, J. Mater. Sci. Mater. Electron. 33 (2022) 828–840.

DOI: 10.1007/s10854-021-07353-9

Google Scholar

[19] R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatz, G. Goglio, Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: About the suitability of an aqueous combustion synthesis route, J. Mater. Chem. 21 (2011) 4393–4401.

DOI: 10.1039/c0jm03963b

Google Scholar

[20] K.Y. Pan, A.H. Shaari, S.K. Chen, L.K. Pah, M. Navasery, M.M.A. Kechik, Effect of Sintering Temperature on Structural, Electrical and Magnetic Properties of La0.7Sr0.3MnO3, Adv. Mater. Res. 1107 (2015) 283–288.

DOI: 10.4028/www.scientific.net/amr.1107.283

Google Scholar

[21] S.S. Kekade, P.A. Yadav, B.R. Thombare, P.R. Dusane, D.M. Phase, R.J. Choudhari, S.I. Patil, Effect of sintering temperature on electronic properties of nanocrystalline La0.7Sr0.3MnO3, Mater. Res. Express. 6 (2019) 0–9.

DOI: 10.1088/2053-1591/ab2f27

Google Scholar

[22] N. Giri, R.K. Natarajan, S. Gunasekaran, S. Shreemathi, C NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles, Arch. Appl. Sci. Res. 3 (2011) 624–630.

Google Scholar

[23] N.D. Thorat, V.M. Khot, A.B. Salunkhe, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications, J. Phys. D. Appl. Phys. 46 (2013).

DOI: 10.1088/0022-3727/46/10/105003

Google Scholar

[24] Y. Chen, Y. Wang, X. Liu, M. Lu, J. Cao, T. Wang, LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia, Nanoscale Res. Lett. 11 (2016) 4–9.

DOI: 10.1186/s11671-016-1756-3

Google Scholar

[25] S. V. Jadhav, D.S. Nikam, V.M. Khot, S.S. Mali, C.K. Hong, S.H. Pawar, PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application, Mater. Charact. 102 (2015) 209–220.

DOI: 10.1016/j.matchar.2015.03.001

Google Scholar

[26] S.S. Cullity BD, No Title, in: Elem. X-Ray Diffr., 3rd edn, Addison-Wesley Publishing Company Inc., USA, 2002.

Google Scholar

[27] R. Haghniaz, R.D. Umrani, K.M. Paknikar, Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: In vitro studies, Int. J. Nanomedicine. 10 (2015) 1609–1623.

DOI: 10.2147/IJN.S78167

Google Scholar

[28] K. McBride, J. Cook, S. Gray, S. Felton, L. Stella, D. Poulidi, Evaluation of La1-xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol-gel method as mediators for magnetic fluid hyperthermia, CrystEngComm. 18 (2016) 407–416.

DOI: 10.1039/c5ce01890k

Google Scholar

[29] M.C. Ferreira, B. Pimentel, V. Andrade, V. Zverev, R.R. Gimaev, A.S. Pomorov, A. Pyatakov, Y. Alekhina, A. Komlev, L. Makarova, N. Perov, M.S. Reis, Understanding the dependence of nanoparticles magnetothermal properties on their size for hyperthermia applications: A case study for la-sr manganites, Nanomaterials. 11 (2021).

DOI: 10.3390/nano11071826

Google Scholar

[30] M. Knobel, W.C. Nunes, A.L. Brandl, J.M. Vargas, L.M. Socolovsky, D. Zanchet, Interaction effects in magnetic granular systems, Phys. B Condens. Matter. 354 (2004) 80–87.

DOI: 10.1016/j.physb.2004.09.024

Google Scholar

[31] N. Kaur, B. Chudasama, Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids, J. Magn. Magn. Mater. 451 (2018) 647–653.

DOI: 10.1016/j.jmmm.2017.11.087

Google Scholar

[32] M.B. Stearns, Y. Cheng, Determination of para- and ferromagnetic components of magnetization and magnetoresistance of granular Co/Ag films (invited), J. Appl. Phys. 75 (1994) 6894–6899.

DOI: 10.1063/1.356773

Google Scholar

[33] E. Ferrari, F. da Silva, M. Knobel, Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 56 (1997) 6086–6093.

DOI: 10.1103/PhysRevB.56.6086

Google Scholar

[34] J.C. Cezar, M. Knobel, H.C.N. Tolentino, Magnetic properties of Cu-Permalloy granular alloy, J. Magn. Magn. Mater. 226–230 (2001) 1519–1521.

DOI: 10.1016/S0304-8853(00)00944-6

Google Scholar

[35] P.K. Yap, A.H. Shaari, H. Baqiah, C.S. Kien, J. Hassan, M.M.A. Kechik, L.K. Pah, Z.A. Talib, Growth and magnetic behaviours of La 0.7 Sr 0.3 MnO 3 nanoparticles synthesized via thermal treatment method, Sains Malaysiana. 48 (2019) 369–375.

DOI: 10.17576/jsm-2019-4802-14

Google Scholar

[36] D. Kouzoudis, G. Samourgkanidis, A. Kolokithas-Ntoukas, G. Zoppellaro, K. Spiliotopoulos, Magnetic Hyperthermia in the 400–1,100 kHz Frequency Range Using MIONs of Condensed Colloidal Nanocrystal Clusters, Front. Mater. 8 (2021) 1–11.

DOI: 10.3389/fmats.2021.638019

Google Scholar

[37] M. Lévy, C. Wilhelm, J.M. Siaugue, O. Horner, J.C. Bacri, F. Gazeau, Magnetically induced hyperthermia: Size-dependent heating power of γ-Fe2O3 nanoparticles, J. Phys. Condens. Matter. 20 (2008).

DOI: 10.1088/0953-8984/20/20/204133

Google Scholar

[38] Caizer Costica, Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia., Nanomaterials. 11 (2021) 5505.

DOI: 10.3390/app11125505

Google Scholar

[39] U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia, Med. Phys. 31 (2004) 1444–1451.

DOI: 10.1118/1.1748629

Google Scholar