Study of Substrate Temperatures Effects on the Properties of Ultrasonically Sprayed SnS2 Thin Films

Article Preview

Abstract:

Tin disulfide (SnS2) thin films have drawn worldwide attention because of their outstanding performance and earth-abundant constituents. However, problems such as coexistence of complex secondary phases (SnS, Sn2S3), the band tailing issue, and bulk defects need to be addressed for further efficiency improvement. In this regard, the present work is intended for the treatment of one of these problems. Herein, a single phase SnS2 has been obtained using an ultrasonic spray pyrolysis method. which is confirmed by X-ray diffraction (XRD) and energy dispersive X-rays (EDXs) characterization techniques. The substrate temperatures (Ts) were increased from 250 °C to 450 °C, and this significantly improved the film's characteristics, which varied from an amorphous phase and a mixture of crystalline phases, SnS2 and SnS (for the films obtained at Ts = 250 and 300 °C) to a SnS2 pure phase with a hexagonal structure (for Ts ≥ 350 °C). The morphological, optical, and electrical properties of SnS2 films are greatly improved by temperature increases too, especially for the film obtained at 450 °C. This suggests that there are opportunities for further efficiency by using the as-deposited SnS2 thin film at 450 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-118

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Bissessur, D. Schipper, Exfoliation and reconstruction of SnS2 layers: A synthetic route for the preparation of polymer-SnS2 nanomaterials, Materials Letters 62 (2008) 1638–1641.

DOI: 10.1016/j.matlet.2007.09.049

Google Scholar

[2] K. Lee, Y. Liang, H. Lin, C. Li, S. Lu, Exfoliated SnS2 Nanoplates for Enhancing Direct Electrochemical Glucose Sensing, Electrochimica Acta 219 (2016) 241–250.

DOI: 10.1016/j.electacta.2016.10.003

Google Scholar

[3] Y. Zhu, Y. Chu, J. Liang, Y. Li, Z. Yuan, Y. Zhang, X. Pan, S. Chou, L. Zhao, W. Li, R. Zeng, Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries, ElectrochimicaActa 190 (2016) 843–851.

DOI: 10.1016/j.electacta.2015.12.127

Google Scholar

[4] G. Valiukonics, D.A. Guseinova, G. Krivaite, A. Sileica, Optical spectra and energy band structure of layer-type AIVBVI compounds,Phys. Stat. Sol. (B) 135 (1986)299–307.

DOI: 10.1002/pssb.2221350130

Google Scholar

[5] M.N. Amroun, M. Khadraoui, Effect of substrate temperature on the properties of SnS2 thin films, Optik 184 (2019) 16–27.

DOI: 10.1016/j.ijleo.2019.03.011

Google Scholar

[6] A. Ortiz, J.C. Alonso, M. Garcı´a, J. Toriz, Tin sulphide films deposited by plasma-enhanced chemical vapour deposition, Semicond. Sci. Technol. 11 (1996) 243–231.

DOI: 10.1088/0268-1242/11/2/017

Google Scholar

[7] S. Lopez, A. Ortiz, Spray pyrolysis deposition of SnxSy thin films, Semicond. Sci. Technol. 9 (1994) 1-10.

Google Scholar

[8] K. Wu, C.J. Wu, C.M. Tseng, J.K. Chang, T.C. Lee, J. of the Taiwan Institute of Chemical Engineers 66 (2016) 292–300.

Google Scholar

[9] C.R. Whitehouse, A.A. Balchin, Polytypism in tin disulphide, J. Cryst. Growth 47 (1979) 203-212.

DOI: 10.1016/0022-0248(79)90243-4

Google Scholar

[10] C. Shi, P. Yang, M. Yao, X. Dai, Z. Chen, Preparation of SnS2 thin films by closespaced sublimation at different source temperatures, Thin Solid Films 534 (2013) 28-31.

DOI: 10.1016/j.tsf.2013.01.072

Google Scholar

[11] L. Amalraj, C. Sanjeeviraja, M. Jayachandran, Spray pyrolysised tin disulphide thin film and characterisation, J. Cryst. Growth 234 (2002) 683-689.

DOI: 10.1016/s0022-0248(01)01756-0

Google Scholar

[12] N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, R. Sharma, Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique, J. Alloys Compd. 436 (2007) 421-426.

DOI: 10.1016/j.jallcom.2006.12.108

Google Scholar

[13] S. Acharya, O.N. Srivastava, Electronic behaviour of SnS2 crystals. J. Phys. Status Solidi 65 (1981) 717-723.

DOI: 10.1002/pssa.2210650239

Google Scholar

[14] G. Domingo, R.S. Itoga, C.R. Kannewurf, Fundamental optical absorption in SnS2 and SnSe2. Can. J. Appl. Physiol 134 (196) 536-541.

Google Scholar

[15] A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids, G. Mezinskis, Structural and electrical properties of SnS2 thin films, Mater. Chem. Phys. 173 (2016) 52–61.

DOI: 10.1016/j.matchemphys.2016.01.036

Google Scholar

[16] K. Kamli, Z. Hadef, B. Chouial, B. Hadjoudja, Elaboration of Sns2 Thin Films by Ultrasonic Spray for Solar Cell Application, Global Journals of Researches in Engineering 17(5) (2017) 37 – 39.

Google Scholar

[17] U. Chalapathi, B. Poornaprakash, B. Purushotham Reddy, Si-Hyun Park, Preparation of SnS2 thin films by conversion of chemically deposited cubic SnS films into SnS2, Thin Solid Films 640 (2017) 81–87.

DOI: 10.1016/j.tsf.2017.09.004

Google Scholar

[18] Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L. Monti, D.A. Racke, M.R. Neupane, D. Wickramaratne, R.K. Lake, B.A. Parkinson, P. Sutter, Tin disulfide–an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics, ACS Nano 8 (2014) 10743–10755.

DOI: 10.1021/nn504481r

Google Scholar

[19] Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Ed. 51 (2012) 8727–8731.

DOI: 10.1002/anie.201204675

Google Scholar

[20] S. Wang, S. Wang, J. Chen, P. Liu, M. Chen, H. Xiong, et al., Influence of the deposition parameters on the properties of SnS2 films prepared by PECVD method combined with solid sources, J. Nanopart. Res. 16 (2014) 2610-2623.

DOI: 10.1007/s11051-014-2610-0

Google Scholar

[21] B. Zaidi, N. Houaidji, A. Khadraoui, S. Gagui, C. Shekhar, Y. Ozen, K. Kamli, Z. Hadef, M. Donmez, B. Comert, S. Ozcelik, B. Chouial, B. Hadjoudja, Structural, Optical and Electrical properties of ZnxSn1-xS thin films deposited by chemical spray pyrolysis, J. l Nano Research, 61(2020)72-77

DOI: 10.4028/www.scientific.net/jnanor.61.72

Google Scholar

[22] M.N. Amroun, M. Khadraoui, R. Miloua, Z. Kebbab, K. Sahraoui, Investigation on the structural, optical and electrical properties of mixed SnS2-CdS thin films,Optik 131 (2017) 152–164.

DOI: 10.1016/j.ijleo.2016.11.005

Google Scholar

[23] Sreedevi Gedi, Vasudeva Reddy, Minnam Reddy, Babu Pejjai, Chinho Park, Chan-Wook Jeon, K.T. Ramakrishna Reddy, Studies on chemical bath deposited SnS2 films for Cd-Free thin film solar cells, Ceram. Int. 43 (2017) 3713–3719.

DOI: 10.1016/j.ceramint.2016.11.219

Google Scholar

[24] K.V. Khot, V.B. Ghanwat, C.S. Bagade, S.S. Mali, R.R. Bhosale, T.D. Dongale, P.N. Bhosale, Synthesis of SnS thin film via non vacuum arrested precipitation technique for solar cell application, Materials Letters 180 (2016) 23–26.

DOI: 10.1016/j.matlet.2016.05.089

Google Scholar

[25] J. Tu, X. Shi, H. Lu, N. Yang, Y. Yuan, Facile fabrication of SnS quantum dots for photoreduction of aqueous Cr(VI), Materials Letters 185 (2016) 303–306.

DOI: 10.1016/j.matlet.2016.09.002

Google Scholar

[26] Y. Sun, G. Li, J. Xu, Z. Sun,Visible-light photocatalytic reduction of carbon dioxide over SnS, Materials Letters 174 (2016) 238–241.

DOI: 10.1016/j.matlet.2016.03.122

Google Scholar

[27] C. Khélia, K. Boubaker, T. Ben Nasrallah, M. Amlouk, S. Belgacem, Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion, J.Alloys and Compounds 477 (2009) 461–467.

DOI: 10.1016/j.jallcom.2008.10.051

Google Scholar

[28] O.A. Yassin, A.A. Abdelaziz, A.Y. Jaber, Structural and optical characterization of V- and W-doped SnS2 thin films prepared by spray pyrolysis, Materials Science in Semiconductor Processing 38 (2015) 81–86.

DOI: 10.1016/j.mssp.2015.03.050

Google Scholar

[29] C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Influence of annealing oncharacteristics of tin disulfide thin films by vacuum thermal evaporation, Thin Solid Films 52(2012) 4898–4901.

DOI: 10.1016/j.tsf.2012.03.050

Google Scholar

[30] S. Abbas, A. Ben Haoua, B. Ben Haoua, A. Rahal, Optical and Structural Characterization of Fluorine-Doped SnO2 Thin Films Prepared by Spray Ultrasonic, J. New Technology and Materials 4 (2014)106-111.

DOI: 10.12816/0010312

Google Scholar

[31] M. Ajili, M. Castagné, N. KamounTurki, Spray solution flow rate effect on growth, optoelectronic characteristics and photoluminescence of SnO2: F thin films for photovoltaic application, Optic 126 (2015) 708-714.

DOI: 10.1016/j.ijleo.2015.02.039

Google Scholar

[32] A. Jrad, T. Ben Nasr, N. Turki-Kamoun, Study of structural, optical and photoluminescence properties of indium-doped zinc sulfide thin films for optoelectronic applications, Optical Materials 50 (2015) 128-133.

DOI: 10.1016/j.optmat.2015.10.011

Google Scholar

[33] A. Benhaoua, A. Rahal, B. Benhaoua, M. Jalaci, Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by Spray Ultrasonic, Superlattices and Microstructures 70 (2014) 61-69.

DOI: 10.1016/j.spmi.2014.02.005

Google Scholar

[34] V.N.T.K. Satyanarayana, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials , Prog. Mater. Sci. 52 (2007) 699-913.

DOI: 10.1016/j.pmatsci.2006.08.001

Google Scholar

[35] Z. Hadef, K. Kamli, A. Attaf, S. Aida, B. Chouial, Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis, J. Semicond. 38 (2017) 1-6.

DOI: 10.1088/1674-4926/38/6/063001

Google Scholar

[36] H. Su, Y. Xie, Y. Xiong, P. Gao, and Y. Qian, Preparation and morphology control of rod-like nanocrystalline tin sulfides via a simple ethanol thermal route, J. Solid State Chem, 161 (2001) 190-196.

DOI: 10.1006/jssc.2001.9288

Google Scholar

[37] C. An, K. Tang, G. Shen, C. Wang, Q. Yang, B. Hai, Y. Qian, Growth of belt-like SnS crystals from ethylenediamine solution, J. Cryst. Growth 244 (2002) 333-338.

DOI: 10.1016/s0022-0248(02)01613-5

Google Scholar

[38] C. An, K. Tang, Y. Jin, Q. Liu, X. Chen, and Y. Qian, Shape-selected synthesis of nanocrystalline SnS in different alkaline media, J. Cryst. Growth 252 (2003) 581-586.

DOI: 10.1016/s0022-0248(03)00961-8

Google Scholar

[39] Q. Li, Y. Ding, H. Wu, X. Liu, and Y. Qian, Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route, Mater. Res. Bull. 37 (2002) 925-932.

DOI: 10.1016/s0025-5408(02)00705-5

Google Scholar

[40] G. Shen, D. Chen, K. Tang, L. Huang, Y. Qian, G. Zhou, Novel polyol route to nanoscale tin sulfides flaky crystallines Inorg. Chem. Commun., 6 (2003) 178-180.

DOI: 10.1016/s1387-7003(02)00716-5

Google Scholar

[41] D. Chen, G. Shen, K. Tang, S. Lei, H. Zheng, and Y. Qian, Microwave-assisted polyol synthesis of nanoscale SnSx (x= 1, 2) flakes. J J. Cryst. Growth 260 (2004) 469-474.

DOI: 10.1016/j.jcrysgro.2003.09.009

Google Scholar

[42] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. Jay Chey and S. Guha,Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Progress in Photovoltaics 21 (2013) 72-76.

DOI: 10.1002/pip.1174

Google Scholar

[43] M. Devika, N.K. Reddy, D.S. Reddy, Q. Ahsanulhaq, K. Ramesh, E.S.R. Gopal, K.R. Gunasekhar, Y.B. Hahn, Synthesis and Characterization of Nanocrystalline SnS Films Grown by Thermal Evaporation Technique, J. Electrochemical Society 155 (2) (2008) H130-H135.

DOI: 10.1149/1.2819677

Google Scholar

[44] J. Vijayarajasekaran, K. Vijayakumar, Spray Pyrolytic Deposition and Characterization of Tin Disulphide Thin Films, Int. J. Thin. Fil. Sci. Tech. 4 (2015) 231-235.

DOI: 10.18576/ijtfst/060204

Google Scholar

[45] A. Voznyi, V. Kosyak, P. Onufrijevs, L. Grase, J. Vecstaudža, A. Opanasyuk, A. Medvid, Laser-induced SnS2-SnS phase transition and surface modification in SnS2 thin films, J.Allo.Comp. 688 (2016) 130-139.

DOI: 10.1016/j.jallcom.2016.07.103

Google Scholar

[46] T.S. Moss, Relation between the refractive index and energy gap of semiconductors, Phy. Stat. Sol. (B).131 (1985) 415-427.

DOI: 10.1002/pssb.2221310202

Google Scholar

[47] N.M. Ravindra, V.K. Srivastava, Variation of refractive index with energy gap in semiconductors, Infrared Phys. 19 (1979) 603-604.

DOI: 10.1016/0020-0891(79)90081-2

Google Scholar

[48] P.J. Herve, L.K. Vandamme, General relation between refractive index and energy gap in semiconductors, Infrared Phys. 35 (1994) 609-615.

DOI: 10.1016/1350-4495(94)90026-4

Google Scholar

[49] K. Kamli, Z. Hadef, B. Chouial, B. Zaidi, B. Hadjoudja and A. Chibani, Synthesis and characterisation of tin sulphide thin films, Surf. Eng. 33 (2017) 567-572.

DOI: 10.1080/02670844.2016.1271593

Google Scholar