Magnetic Behavior of Ising Nanowire with Mixed Integer Spins: A Monte Carlo Study

Article Preview

Abstract:

The magnetic and thermal properties of a ferrimagnetic mixed spin-1 and spin-2 cubic Ising nanowire are studied by using the Monte Carlo simulation. The influences of the nearest (JAB) and next-nearest neighbor (JA and JB) exchange interactions and the single-ion anisotropies (DA and DB) on the critical and compensation temperatures are illustrated. Moreover, the phase diagrams on the (temperature, anisotropy) plane are plotted for several values of JA/|JAB|. The system shows very rich and interesting behaviors, namely first and second order phase transitions, tricritical points and compensation phenomenon. Finally, the dependence of hysteresis loops on the anisotropies, the exchange interactions and the temperature is also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-168

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Rogers, J. Adams, S. Pennathur, Nanotechnology : Understanding Small Systems, Third Edition, CRC Press, Boca Raton, USA (2015), n.d.

Google Scholar

[2] K.D. Sattler, ed., Handbook of nanophysics. Nanotubes and nanowires, Taylor & Francis, Boca Raton, Fla, 2011.

Google Scholar

[3] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance, Mater. Sci. Eng. R Rep. 83 (2014) 1–59.

DOI: 10.1016/j.mser.2014.06.002

Google Scholar

[4] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, Phase-change random access memory: A scalable technology, IBM J. Res. Dev. 52 (2008) 465–479.

DOI: 10.1147/rd.524.0465

Google Scholar

[5] Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Lett. 4 (2004) 245–247.

DOI: 10.1021/nl034958e

Google Scholar

[6] S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires, Nanoscale. 6 (2014) 2345.

DOI: 10.1039/c3nr05496a

Google Scholar

[7] J.-H. Gao, Q.-F. Zhan, W. He, D.-L. Sun, Z.-H. Cheng, Synthesis and magnetic properties of Fe3Pt nanowire arrays fabricated by electrodeposition, Appl. Phys. Lett. 86 (2005) 232506.

DOI: 10.1063/1.1944210

Google Scholar

[8] Z. Fan, J.G. Lu, Nanostructured ZnO: Building Blocks for Nanoscale Devices, Int. J. High Speed Electron. Syst. 16 (2006) 883–896.

DOI: 10.1142/S0129156406004065

Google Scholar

[9] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, K.J. Ziegler, Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography, ACS Appl. Mater. Interfaces. 9 (2017) 7368–7375.

DOI: 10.1021/acsami.6b09959

Google Scholar

[10] H. Chiriac, S. Corodeanu, T.-A. Óvári, N. Lupu, Microstructure and magnetic properties of FINEMET nanowires, J. Appl. Phys. 113 (2013) 17A329.

DOI: 10.1063/1.4798505

Google Scholar

[11] R. Hasegawa, Advances in amorphous and nanocrystalline materials, J. Magn. Magn. Mater. 324 (2012) 3555–3557.

DOI: 10.1016/j.jmmm.2012.02.088

Google Scholar

[12] M.R. Tabasum, F. Zighem, J.D.L.T. Medina, A. Encinas, L. Piraux, B. Nysten, Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes, Nanotechnology. 25 (2014) 245707.

DOI: 10.1088/0957-4484/25/24/245707

Google Scholar

[13] M. Ertaş, E. Kantar, Hexagonal Type Ising Nanowire with Spin-1 Core and Spin-2 Shell Structure, Commun. Theor. Phys. 64 (2015) 401–408.

DOI: 10.1088/0253-6102/64/4/401

Google Scholar

[14] T. Kaneyoshi, Phase diagrams of a transverse Ising nanowire, J. Magn. Magn. Mater. 322 (2010) 3014–3018.

DOI: 10.1016/j.jmmm.2010.05.021

Google Scholar

[15] T. Kaneyoshi, The effects of random field at surface on the magnetic properties in the Ising nanotube and nanowire, J. Magn. Magn. Mater. 420 (2016) 303–308.

DOI: 10.1016/j.jmmm.2016.07.039

Google Scholar

[16] Y. Kocakaplan, E. Kantar, M. Keskin, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B. 86 (2013) 420.

DOI: 10.1140/epjb/e2013-40659-0

Google Scholar

[17] E. Kantar, Angular-Dependent Hysteresis Properties in the Ising-Type Multilayer Nanowire, J. Supercond. Nov. Magn. 30 (2017) 227–236.

DOI: 10.1007/s10948-016-3732-7

Google Scholar

[18] M. Keskin, N. Şarlı, B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire, Solid State Commun. 151 (2011) 1025–1030.

DOI: 10.1016/j.ssc.2011.04.019

Google Scholar

[19] N. Hachem, M. Madani, A. Lafhal, A. El Antari, A. Alrajhi, M. El Bouziani, Magnetic Properties of a Mixed Spin-3/2 and Spin-1/2 Ising Nanowire with Nearest and Next-Nearest Neighbour Interactions, J. Supercond. Nov. Magn. 31 (2018) 2165–2172.

DOI: 10.1007/s10948-017-4468-8

Google Scholar

[20] M. Gharaibeh, M.H.A. Badarneh, S. Alqaiem, A. Obeidat, M.-K. Qaseer, Magnetic properties and phase diagrams of mixed spin-1 and spin-1/2 Ising model on a checkerboard square structure: A Monte Carlo study, J. Magn. Magn. Mater. 540 (2021) 168458.

DOI: 10.1016/j.jmmm.2021.168458

Google Scholar

[21] B. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of a ferrimagnetic cylindrical core/shell spin-1 Ising nanowire, J. Magn. Magn. Mater. 354 (2014) 173–177.

DOI: 10.1016/j.jmmm.2013.10.052

Google Scholar

[22] W. Wang, J. Bi, R. Liu, X. Chen, J. Liu, Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire, Superlattices Microstruct. 98 (2016) 433–447.

DOI: 10.1016/j.spmi.2016.09.013

Google Scholar

[23] D. Lv, F. Wang, R. Liu, Q. Xue, S. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure, J. Alloys Compd. 701 (2017) 935–949.

DOI: 10.1016/j.jallcom.2017.01.099

Google Scholar

[24] E. Albayrak, Square Ising Nanowire on the Bethe Lattice, Acta Phys. Pol. A. 131 (2017) 1470–1473.

DOI: 10.12693/APhysPolA.131.1470

Google Scholar

[25] G. Wei, Y. Gu, J. Liu, Mean-field and Monte Carlo studies of a mixed spin-1 and spin-2 Ising system with different anisotropies, Phys. Rev. B. 74 (2006).

DOI: 10.1103/PhysRevB.74.024422

Google Scholar

[26] B. Deviren, M. Ertaş, M. Keskin, The effective-field theory studies of critical phenomena in a mixed spin-1 and spin-2 Ising model on honeycomb and square lattices, Phys. Stat. Mech. Its Appl. 389 (2010) 2036–2047.

DOI: 10.1016/j.physa.2010.01.038

Google Scholar

[27] M. Ertaş, E. Kantar, Hexagonal Type Ising Nanowire with Spin-1 Core and Spin-2 Shell Structure, Commun. Theor. Phys. 64 (2015) 401–408.

DOI: 10.1088/0253-6102/64/4/401

Google Scholar

[28] N. De La Espriella, J.C. Madera, A. Sánchez-Caraballo, Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system, Phys. Stat. Mech. Its Appl. 511 (2018) 289–301.

DOI: 10.1016/j.physa.2018.07.053

Google Scholar

[29] G. Mert, H.Ş. Mert, Magnetic properties of a mixed spin-1 and spin-2 Heisenberg ferrimagnetic system: Green's function study, Phys. Stat. Mech. Its Appl. 391 (2012) 5926–5934.

DOI: 10.1016/j.physa.2012.07.015

Google Scholar

[30] A. Lafhal, N. Hachem, H. Zahir, M. El Bouziani, M. Madani, A. Alrajhi, Finite Temperature Phase Diagrams of the Mixed Spin-1 and Spin-2 Blume–Capel Model by Renormalization Group Approach, J. Stat. Phys. 174 (2019) 40–55.

DOI: 10.1007/s10955-018-2172-0

Google Scholar

[31] R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure, Phys. B Condens. Matter. 472 (2015) 19–24.

DOI: 10.1016/j.physb.2015.05.010

Google Scholar

[32] M. Ertaş, Hysteresis and Compensation Behaviors of Mixed Spin-1 and Spin-2 Hexagonal Ising Nanowire System, J. Supercond. Nov. Magn. 29 (2016) 1805–1812.

DOI: 10.1007/s10948-016-3460-z

Google Scholar

[33] D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press, Cambridge ; New York, 2000.

Google Scholar

[34] K.E. Newman, J.D. Dow, Zinc-blende—diamond order-disorder transition in metastable crystalline ( GaAs ) 1 − x Ge 2 x alloys, Phys. Rev. B. 27 (1983) 7495–7508.

DOI: 10.1103/PhysRevB.27.7495

Google Scholar

[35] M.L. Néel, Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme, Ann. Phys. 12 (1948) 137–198.

DOI: 10.1051/anphys/194812030137

Google Scholar

[36] J. Bi, W. Wang, Q. Li, Monte Carlo study of a ferrimagnetic mixed-spin (2, 5/2) system with the nearest and next-nearest neighbors exchange couplings, Superlattices Microstruct. 107 (2017) 104–117.

DOI: 10.1016/j.spmi.2017.04.004

Google Scholar

[37] Q. Li, R. Li, W. Wang, R. Geng, H. Huang, S. Zheng, Magnetic and thermodynamic characteristics of a rectangle Ising nanoribbon, Phys. Stat. Mech. Its Appl. 555 (2020) 124741.

DOI: 10.1016/j.physa.2020.124741

Google Scholar

[38] N. Hachem, M. Alehyane, A. Lafhal, H. Zahir, M. Madani, A. Alrajhi, M. El Bouziani, Phase diagrams of the ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model under a longitudinal magnetic field, Phys. Scr. 94 (2019) 025804.

DOI: 10.1088/1402-4896/aaf53e

Google Scholar

[39] M. Gharaibeh, A. Obeidat, M.-K. Qaseer, M. Badarneh, Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure, Phys. Stat. Mech. Its Appl. 550 (2020) 124147.

DOI: 10.1016/j.physa.2020.124147

Google Scholar

[40] D. Lv, W. Wang, J. Liu, D. Guo, S. Li, Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: A Monte Carlo study, J. Magn. Magn. Mater. 465 (2018) 348–359.

DOI: 10.1016/j.jmmm.2018.06.011

Google Scholar

[41] T. Bahlagui, H. Bouda, A. El Kenz, L. Bahmad, A. Benyoussef, Monte Carlo simulation of compensation behavior for a mixed spin-5/2 and spin-7/2 Ising system with crystal field interaction, Superlattices Microstruct. 110 (2017) 90–97.

DOI: 10.1016/j.spmi.2017.09.001

Google Scholar

[42] K. El Kihel, R. Aharrouch, Y.A. Qahoom, M. Madani, N. Hachem, M. El Bouziani, Mixed spin-3/2 and spin-2 nanowire: magnetic properties and hysteresis behaviors, Multidiscip. Model. Mater. Struct. 17 (2021) 615–629.

DOI: 10.1108/MMMS-09-2020-0233

Google Scholar

[43] E. Albayrak, A. Yigit, The critical behaviors and the phase diagram of the mixed spin-1/2 and spin-2 Ising system on the Bethe lattice, Phys. Status Solidi B. 242 (2005) 1510–1521.

DOI: 10.1002/pssb.200440029

Google Scholar

[44] H. Zahir, T. Bahlagui, A. El Kenz, M.E. Bouziani, A. Benyoussef, A. Hasnaoui, K. Sbiaai, Monte Carlo Study of the Mixed-Spin (1/2, 2) Ferrimagnetic Ising System on a Honeycomb Lattice, J. Supercond. Nov. Magn. 32 (2019) 963–970.

DOI: 10.1007/s10948-018-4768-7

Google Scholar

[45] L. Bahmad, A. Benyoussef, A. El Kenz, Effects of a random crystal field on the spin-2 Blume-Capel model, Phys. Rev. B. 76 (2007).

DOI: 10.1103/PhysRevB.76.094412

Google Scholar

[46] E. Kantar, The Magnetic Properties of the Spin-1 Ising Fullerene Cage with a Core-Shell Structure, J. Supercond. Nov. Magn. 32 (2019) 425–430.

DOI: 10.1007/s10948-018-4729-1

Google Scholar

[47] W. Wang, D. Lv, F. Zhang, J. Bi, J. Chen, Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 385 (2015) 16–26.

DOI: 10.1016/j.jmmm.2015.02.070

Google Scholar

[48] A. Zaim, M. Kerouad, M. Boughrara, Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle, Solid State Commun. 158 (2013) 76–81.

DOI: 10.1016/j.ssc.2012.10.014

Google Scholar

[49] N. Zaim, A. Zaim, M. Kerouad, The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface, Superlattices Microstruct. 100 (2016) 490–499.

DOI: 10.1016/j.spmi.2016.10.003

Google Scholar

[50] R. Aharrouch, K. El Kihel, M. Madani, N. Hachem, A. Lafhal, M. El Bouziani, Magnetic properties and hysteresis behavior of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising nanowire, Multidiscip. Model. Mater. Struct. 16 (2020) 1261–1276.

DOI: 10.1108/MMMS-11-2019-0194

Google Scholar

[51] Z. Wang, Q. Li, F. Wang, L. Sun, M. Tian, W. Wang, Monte Carlo simulation of polarization plateaus and hysteresis behaviors of an antiferroelectric/ferroelectric BiFeO3/YMnO3 Ising bilayer, Superlattices Microstruct. 136 (2019) 106293. https://doi.org/10.1016/j.spmi. 2019.106293.

DOI: 10.1016/j.spmi.2019.106293

Google Scholar

[52] D. Lv, D. Zhang, M. Yang, F. Wang, J. Yu, Monte Carlo study of magnetic behaviors in a ferrimagnetic Ising ladder-like boronene nanoribbon, Superlattices Microstruct. 151 (2021) 106833.

DOI: 10.1016/j.spmi.2021.106833

Google Scholar

[53] L. Bahmad, R. Masrour, A. Benyoussef, Nanographene Magnetic Properties: A Monte Carlo Study, J. Supercond. Nov. Magn. 25 (2012) 2015–2018.

DOI: 10.1007/s10948-012-1552-y

Google Scholar

[54] E. Kantar, Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires, J. Alloys Compd. 676 (2016) 337–346.

DOI: 10.1016/j.jallcom.2016.03.202

Google Scholar

[55] A. Alrajhi, M. Madani, N. Hachem, M. El Bouziani, Phase diagrams and hysteresis behaviors of a ferrimagnetic mixed spins S = 1/2 and S = 1 Ising nanowire, Int. J. Mod. Phys. B. 32 (2018) 1850289.

DOI: 10.1142/S0217979218502892

Google Scholar

[56] H. Magoussi, B. Boughazi, M. Kerouad, The Hysteresis Behavior of a Spin-1 Blume-Capel Nanoisland, J. Supercond. Nov. Magn. 31 (2018) 3817–3826.

DOI: 10.1007/s10948-018-4831-4

Google Scholar

[57] M. Yang, W. Wang, B. Li, H. Wu, S. Yang, J. Yang, Magnetic properties of an Ising ladder-like graphene nanoribbon by using Monte Carlo method, Phys. Stat. Mech. Its Appl. 539 (2020) 122932.

DOI: 10.1016/j.physa.2019.122932

Google Scholar

[58] Z. Gao, D. Lv, W. Wang, J. Yu, Study on the dynamic magnetic behaviors in a ferrimagnetic mixed spin Ising ladder-type graphene nanoribbon, Polymer. 223 (2021) 123678.

DOI: 10.1016/j.polymer.2021.123678

Google Scholar

[59] Z. Peng, W. Wang, D. Lv, R. Liu, Q. Li, Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study, Superlattices Microstruct. 109 (2017) 675–686.

DOI: 10.1016/j.spmi.2017.05.055

Google Scholar

[60] M.I. Dolz, S.D.C. Rivero, H. Pastoriza, F. Romá, Magnetic hysteresis behavior of granular manganite La 0.67 Ca 0.33 MnO 3 nanotubes, Phys. Rev. B. 101 (2020) 174425.

DOI: 10.1103/PhysRevB.101.174425

Google Scholar

[61] S.S. Ahmed, L. Bahmad, A. El Yousfi, A. Benyoussef, A. El Kenz, A.G. El Hachimi, Mixed spin-1 and spin-3/2 Blume-Emery-Griffiths model with external field on a honeycomb lattice, Superlattices Microstruct. 123 (2018) 1–11.

DOI: 10.1016/j.spmi.2017.11.034

Google Scholar

[62] A. Ognev, M. Stebliy, A. Samardak, L. Chebotkevich, An Influence of Boundary Effects and Spatial Symmetry on Magnetization Reversal of Nanodisk Arrays, IEEE Trans. Magn. 48 (2012) 3651–3653.

DOI: 10.1109/TMAG.2012.2203590

Google Scholar

[63] H. Chen, C. Xu, C. Chen, G. Zhao, Y. Liu, Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties, Mater. Res. Bull. 47 (2012) 1839–1844.

DOI: 10.1016/j.materresbull.2012.04.079

Google Scholar

[64] E. Konstantinova, J.A. de Sales, Monte Carlo simulations of magnetic and thermodynamic properties for different nanostructure geometries, J. Magn. Magn. Mater. 367 (2014) 86–91.

DOI: 10.1016/j.jmmm.2014.04.049

Google Scholar