[1]
B. Rogers, J. Adams, S. Pennathur, Nanotechnology : Understanding Small Systems, Third Edition, CRC Press, Boca Raton, USA (2015), n.d.
Google Scholar
[2]
K.D. Sattler, ed., Handbook of nanophysics. Nanotubes and nanowires, Taylor & Francis, Boca Raton, Fla, 2011.
Google Scholar
[3]
F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance, Mater. Sci. Eng. R Rep. 83 (2014) 1–59.
DOI: 10.1016/j.mser.2014.06.002
Google Scholar
[4]
S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, Phase-change random access memory: A scalable technology, IBM J. Res. Dev. 52 (2008) 465–479.
DOI: 10.1147/rd.524.0465
Google Scholar
[5]
Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Lett. 4 (2004) 245–247.
DOI: 10.1021/nl034958e
Google Scholar
[6]
S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires, Nanoscale. 6 (2014) 2345.
DOI: 10.1039/c3nr05496a
Google Scholar
[7]
J.-H. Gao, Q.-F. Zhan, W. He, D.-L. Sun, Z.-H. Cheng, Synthesis and magnetic properties of Fe3Pt nanowire arrays fabricated by electrodeposition, Appl. Phys. Lett. 86 (2005) 232506.
DOI: 10.1063/1.1944210
Google Scholar
[8]
Z. Fan, J.G. Lu, Nanostructured ZnO: Building Blocks for Nanoscale Devices, Int. J. High Speed Electron. Syst. 16 (2006) 883–896.
DOI: 10.1142/S0129156406004065
Google Scholar
[9]
L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, K.J. Ziegler, Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography, ACS Appl. Mater. Interfaces. 9 (2017) 7368–7375.
DOI: 10.1021/acsami.6b09959
Google Scholar
[10]
H. Chiriac, S. Corodeanu, T.-A. Óvári, N. Lupu, Microstructure and magnetic properties of FINEMET nanowires, J. Appl. Phys. 113 (2013) 17A329.
DOI: 10.1063/1.4798505
Google Scholar
[11]
R. Hasegawa, Advances in amorphous and nanocrystalline materials, J. Magn. Magn. Mater. 324 (2012) 3555–3557.
DOI: 10.1016/j.jmmm.2012.02.088
Google Scholar
[12]
M.R. Tabasum, F. Zighem, J.D.L.T. Medina, A. Encinas, L. Piraux, B. Nysten, Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes, Nanotechnology. 25 (2014) 245707.
DOI: 10.1088/0957-4484/25/24/245707
Google Scholar
[13]
M. Ertaş, E. Kantar, Hexagonal Type Ising Nanowire with Spin-1 Core and Spin-2 Shell Structure, Commun. Theor. Phys. 64 (2015) 401–408.
DOI: 10.1088/0253-6102/64/4/401
Google Scholar
[14]
T. Kaneyoshi, Phase diagrams of a transverse Ising nanowire, J. Magn. Magn. Mater. 322 (2010) 3014–3018.
DOI: 10.1016/j.jmmm.2010.05.021
Google Scholar
[15]
T. Kaneyoshi, The effects of random field at surface on the magnetic properties in the Ising nanotube and nanowire, J. Magn. Magn. Mater. 420 (2016) 303–308.
DOI: 10.1016/j.jmmm.2016.07.039
Google Scholar
[16]
Y. Kocakaplan, E. Kantar, M. Keskin, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B. 86 (2013) 420.
DOI: 10.1140/epjb/e2013-40659-0
Google Scholar
[17]
E. Kantar, Angular-Dependent Hysteresis Properties in the Ising-Type Multilayer Nanowire, J. Supercond. Nov. Magn. 30 (2017) 227–236.
DOI: 10.1007/s10948-016-3732-7
Google Scholar
[18]
M. Keskin, N. Şarlı, B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire, Solid State Commun. 151 (2011) 1025–1030.
DOI: 10.1016/j.ssc.2011.04.019
Google Scholar
[19]
N. Hachem, M. Madani, A. Lafhal, A. El Antari, A. Alrajhi, M. El Bouziani, Magnetic Properties of a Mixed Spin-3/2 and Spin-1/2 Ising Nanowire with Nearest and Next-Nearest Neighbour Interactions, J. Supercond. Nov. Magn. 31 (2018) 2165–2172.
DOI: 10.1007/s10948-017-4468-8
Google Scholar
[20]
M. Gharaibeh, M.H.A. Badarneh, S. Alqaiem, A. Obeidat, M.-K. Qaseer, Magnetic properties and phase diagrams of mixed spin-1 and spin-1/2 Ising model on a checkerboard square structure: A Monte Carlo study, J. Magn. Magn. Mater. 540 (2021) 168458.
DOI: 10.1016/j.jmmm.2021.168458
Google Scholar
[21]
B. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of a ferrimagnetic cylindrical core/shell spin-1 Ising nanowire, J. Magn. Magn. Mater. 354 (2014) 173–177.
DOI: 10.1016/j.jmmm.2013.10.052
Google Scholar
[22]
W. Wang, J. Bi, R. Liu, X. Chen, J. Liu, Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire, Superlattices Microstruct. 98 (2016) 433–447.
DOI: 10.1016/j.spmi.2016.09.013
Google Scholar
[23]
D. Lv, F. Wang, R. Liu, Q. Xue, S. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure, J. Alloys Compd. 701 (2017) 935–949.
DOI: 10.1016/j.jallcom.2017.01.099
Google Scholar
[24]
E. Albayrak, Square Ising Nanowire on the Bethe Lattice, Acta Phys. Pol. A. 131 (2017) 1470–1473.
DOI: 10.12693/APhysPolA.131.1470
Google Scholar
[25]
G. Wei, Y. Gu, J. Liu, Mean-field and Monte Carlo studies of a mixed spin-1 and spin-2 Ising system with different anisotropies, Phys. Rev. B. 74 (2006).
DOI: 10.1103/PhysRevB.74.024422
Google Scholar
[26]
B. Deviren, M. Ertaş, M. Keskin, The effective-field theory studies of critical phenomena in a mixed spin-1 and spin-2 Ising model on honeycomb and square lattices, Phys. Stat. Mech. Its Appl. 389 (2010) 2036–2047.
DOI: 10.1016/j.physa.2010.01.038
Google Scholar
[27]
M. Ertaş, E. Kantar, Hexagonal Type Ising Nanowire with Spin-1 Core and Spin-2 Shell Structure, Commun. Theor. Phys. 64 (2015) 401–408.
DOI: 10.1088/0253-6102/64/4/401
Google Scholar
[28]
N. De La Espriella, J.C. Madera, A. Sánchez-Caraballo, Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system, Phys. Stat. Mech. Its Appl. 511 (2018) 289–301.
DOI: 10.1016/j.physa.2018.07.053
Google Scholar
[29]
G. Mert, H.Ş. Mert, Magnetic properties of a mixed spin-1 and spin-2 Heisenberg ferrimagnetic system: Green's function study, Phys. Stat. Mech. Its Appl. 391 (2012) 5926–5934.
DOI: 10.1016/j.physa.2012.07.015
Google Scholar
[30]
A. Lafhal, N. Hachem, H. Zahir, M. El Bouziani, M. Madani, A. Alrajhi, Finite Temperature Phase Diagrams of the Mixed Spin-1 and Spin-2 Blume–Capel Model by Renormalization Group Approach, J. Stat. Phys. 174 (2019) 40–55.
DOI: 10.1007/s10955-018-2172-0
Google Scholar
[31]
R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure, Phys. B Condens. Matter. 472 (2015) 19–24.
DOI: 10.1016/j.physb.2015.05.010
Google Scholar
[32]
M. Ertaş, Hysteresis and Compensation Behaviors of Mixed Spin-1 and Spin-2 Hexagonal Ising Nanowire System, J. Supercond. Nov. Magn. 29 (2016) 1805–1812.
DOI: 10.1007/s10948-016-3460-z
Google Scholar
[33]
D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press, Cambridge ; New York, 2000.
Google Scholar
[34]
K.E. Newman, J.D. Dow, Zinc-blende—diamond order-disorder transition in metastable crystalline ( GaAs ) 1 − x Ge 2 x alloys, Phys. Rev. B. 27 (1983) 7495–7508.
DOI: 10.1103/PhysRevB.27.7495
Google Scholar
[35]
M.L. Néel, Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme, Ann. Phys. 12 (1948) 137–198.
DOI: 10.1051/anphys/194812030137
Google Scholar
[36]
J. Bi, W. Wang, Q. Li, Monte Carlo study of a ferrimagnetic mixed-spin (2, 5/2) system with the nearest and next-nearest neighbors exchange couplings, Superlattices Microstruct. 107 (2017) 104–117.
DOI: 10.1016/j.spmi.2017.04.004
Google Scholar
[37]
Q. Li, R. Li, W. Wang, R. Geng, H. Huang, S. Zheng, Magnetic and thermodynamic characteristics of a rectangle Ising nanoribbon, Phys. Stat. Mech. Its Appl. 555 (2020) 124741.
DOI: 10.1016/j.physa.2020.124741
Google Scholar
[38]
N. Hachem, M. Alehyane, A. Lafhal, H. Zahir, M. Madani, A. Alrajhi, M. El Bouziani, Phase diagrams of the ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model under a longitudinal magnetic field, Phys. Scr. 94 (2019) 025804.
DOI: 10.1088/1402-4896/aaf53e
Google Scholar
[39]
M. Gharaibeh, A. Obeidat, M.-K. Qaseer, M. Badarneh, Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure, Phys. Stat. Mech. Its Appl. 550 (2020) 124147.
DOI: 10.1016/j.physa.2020.124147
Google Scholar
[40]
D. Lv, W. Wang, J. Liu, D. Guo, S. Li, Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: A Monte Carlo study, J. Magn. Magn. Mater. 465 (2018) 348–359.
DOI: 10.1016/j.jmmm.2018.06.011
Google Scholar
[41]
T. Bahlagui, H. Bouda, A. El Kenz, L. Bahmad, A. Benyoussef, Monte Carlo simulation of compensation behavior for a mixed spin-5/2 and spin-7/2 Ising system with crystal field interaction, Superlattices Microstruct. 110 (2017) 90–97.
DOI: 10.1016/j.spmi.2017.09.001
Google Scholar
[42]
K. El Kihel, R. Aharrouch, Y.A. Qahoom, M. Madani, N. Hachem, M. El Bouziani, Mixed spin-3/2 and spin-2 nanowire: magnetic properties and hysteresis behaviors, Multidiscip. Model. Mater. Struct. 17 (2021) 615–629.
DOI: 10.1108/MMMS-09-2020-0233
Google Scholar
[43]
E. Albayrak, A. Yigit, The critical behaviors and the phase diagram of the mixed spin-1/2 and spin-2 Ising system on the Bethe lattice, Phys. Status Solidi B. 242 (2005) 1510–1521.
DOI: 10.1002/pssb.200440029
Google Scholar
[44]
H. Zahir, T. Bahlagui, A. El Kenz, M.E. Bouziani, A. Benyoussef, A. Hasnaoui, K. Sbiaai, Monte Carlo Study of the Mixed-Spin (1/2, 2) Ferrimagnetic Ising System on a Honeycomb Lattice, J. Supercond. Nov. Magn. 32 (2019) 963–970.
DOI: 10.1007/s10948-018-4768-7
Google Scholar
[45]
L. Bahmad, A. Benyoussef, A. El Kenz, Effects of a random crystal field on the spin-2 Blume-Capel model, Phys. Rev. B. 76 (2007).
DOI: 10.1103/PhysRevB.76.094412
Google Scholar
[46]
E. Kantar, The Magnetic Properties of the Spin-1 Ising Fullerene Cage with a Core-Shell Structure, J. Supercond. Nov. Magn. 32 (2019) 425–430.
DOI: 10.1007/s10948-018-4729-1
Google Scholar
[47]
W. Wang, D. Lv, F. Zhang, J. Bi, J. Chen, Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 385 (2015) 16–26.
DOI: 10.1016/j.jmmm.2015.02.070
Google Scholar
[48]
A. Zaim, M. Kerouad, M. Boughrara, Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle, Solid State Commun. 158 (2013) 76–81.
DOI: 10.1016/j.ssc.2012.10.014
Google Scholar
[49]
N. Zaim, A. Zaim, M. Kerouad, The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface, Superlattices Microstruct. 100 (2016) 490–499.
DOI: 10.1016/j.spmi.2016.10.003
Google Scholar
[50]
R. Aharrouch, K. El Kihel, M. Madani, N. Hachem, A. Lafhal, M. El Bouziani, Magnetic properties and hysteresis behavior of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising nanowire, Multidiscip. Model. Mater. Struct. 16 (2020) 1261–1276.
DOI: 10.1108/MMMS-11-2019-0194
Google Scholar
[51]
Z. Wang, Q. Li, F. Wang, L. Sun, M. Tian, W. Wang, Monte Carlo simulation of polarization plateaus and hysteresis behaviors of an antiferroelectric/ferroelectric BiFeO3/YMnO3 Ising bilayer, Superlattices Microstruct. 136 (2019) 106293. https://doi.org/10.1016/j.spmi. 2019.106293.
DOI: 10.1016/j.spmi.2019.106293
Google Scholar
[52]
D. Lv, D. Zhang, M. Yang, F. Wang, J. Yu, Monte Carlo study of magnetic behaviors in a ferrimagnetic Ising ladder-like boronene nanoribbon, Superlattices Microstruct. 151 (2021) 106833.
DOI: 10.1016/j.spmi.2021.106833
Google Scholar
[53]
L. Bahmad, R. Masrour, A. Benyoussef, Nanographene Magnetic Properties: A Monte Carlo Study, J. Supercond. Nov. Magn. 25 (2012) 2015–2018.
DOI: 10.1007/s10948-012-1552-y
Google Scholar
[54]
E. Kantar, Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires, J. Alloys Compd. 676 (2016) 337–346.
DOI: 10.1016/j.jallcom.2016.03.202
Google Scholar
[55]
A. Alrajhi, M. Madani, N. Hachem, M. El Bouziani, Phase diagrams and hysteresis behaviors of a ferrimagnetic mixed spins S = 1/2 and S = 1 Ising nanowire, Int. J. Mod. Phys. B. 32 (2018) 1850289.
DOI: 10.1142/S0217979218502892
Google Scholar
[56]
H. Magoussi, B. Boughazi, M. Kerouad, The Hysteresis Behavior of a Spin-1 Blume-Capel Nanoisland, J. Supercond. Nov. Magn. 31 (2018) 3817–3826.
DOI: 10.1007/s10948-018-4831-4
Google Scholar
[57]
M. Yang, W. Wang, B. Li, H. Wu, S. Yang, J. Yang, Magnetic properties of an Ising ladder-like graphene nanoribbon by using Monte Carlo method, Phys. Stat. Mech. Its Appl. 539 (2020) 122932.
DOI: 10.1016/j.physa.2019.122932
Google Scholar
[58]
Z. Gao, D. Lv, W. Wang, J. Yu, Study on the dynamic magnetic behaviors in a ferrimagnetic mixed spin Ising ladder-type graphene nanoribbon, Polymer. 223 (2021) 123678.
DOI: 10.1016/j.polymer.2021.123678
Google Scholar
[59]
Z. Peng, W. Wang, D. Lv, R. Liu, Q. Li, Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study, Superlattices Microstruct. 109 (2017) 675–686.
DOI: 10.1016/j.spmi.2017.05.055
Google Scholar
[60]
M.I. Dolz, S.D.C. Rivero, H. Pastoriza, F. Romá, Magnetic hysteresis behavior of granular manganite La 0.67 Ca 0.33 MnO 3 nanotubes, Phys. Rev. B. 101 (2020) 174425.
DOI: 10.1103/PhysRevB.101.174425
Google Scholar
[61]
S.S. Ahmed, L. Bahmad, A. El Yousfi, A. Benyoussef, A. El Kenz, A.G. El Hachimi, Mixed spin-1 and spin-3/2 Blume-Emery-Griffiths model with external field on a honeycomb lattice, Superlattices Microstruct. 123 (2018) 1–11.
DOI: 10.1016/j.spmi.2017.11.034
Google Scholar
[62]
A. Ognev, M. Stebliy, A. Samardak, L. Chebotkevich, An Influence of Boundary Effects and Spatial Symmetry on Magnetization Reversal of Nanodisk Arrays, IEEE Trans. Magn. 48 (2012) 3651–3653.
DOI: 10.1109/TMAG.2012.2203590
Google Scholar
[63]
H. Chen, C. Xu, C. Chen, G. Zhao, Y. Liu, Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties, Mater. Res. Bull. 47 (2012) 1839–1844.
DOI: 10.1016/j.materresbull.2012.04.079
Google Scholar
[64]
E. Konstantinova, J.A. de Sales, Monte Carlo simulations of magnetic and thermodynamic properties for different nanostructure geometries, J. Magn. Magn. Mater. 367 (2014) 86–91.
DOI: 10.1016/j.jmmm.2014.04.049
Google Scholar