Electrochemical Behavior of Nanocrystalline NiMoO4 Hydrate Modified by Ultrasound

Article Preview

Abstract:

To improve the specific capacitance, power and energy of electrical energy storage devices, in particular hybrid capacitors, various methods of cathode material modification are used. One of the methods of modifying nanostructured materials without applying high temperatures, pressures and long reaction times is ultrasonic treatment. Although the interaction of ultrasound with the structure and surface of electrode materials is well enough studied, there are few works that investigate the optimal duration of ultrasonic treatment and its relationship with the capacitive characteristics of these materials. Therefore, we investigated the efficiency of ultrasonic dispersion of nanocrystalline nickel molybdate hydrate for 15, 60 and 90 minutes. The appearance of two cathodic peaks on cyclic voltammetry patterns was analyzed and the charge / discharge mechanism of the electrode based on nanocrystalline NiMoO4 hydrate was presented. Based on the results of potentiodynamic and galvanostatic studies the specific capacitances of the initial NiMoO4 and the material modified by ultrasound for 15, 60 and 90 minutes were calculated. The proton diffusion coefficients of nickel molybdate hydrate were determined on the basis of the Randles–Sevcik equation. NiMoO4 subjected to ultrasonic dispersion for 60 min as a cathode material in a hybrid electrochemical system was tested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-154

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Watcharatharapong, M. Minakshi Sundaram, S. Chakraborty, D. Li, G.M. Shafiullah, R.D. Aughterson, R. Ahuja, Effect of transition metal cations on stability enhancement for molybdate-based hybrid supercapacitor. ACS Applied Materials & Interfaces. 9 (2017) 17977-17991

DOI: 10.1021/acsami.7b03836

Google Scholar

[2] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews. 101 (2019) 123-145

DOI: 10.1016/j.rser.2018.10.026

Google Scholar

[3] B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, V.M. Vashchynsky, V.I. Mandzyuk, R.P. Lisovsky, L.O. Shyyko, Thermochemically activated carbon as an electrode material for supercapacitors. Nanoscale Research Letters. 10 (2015) 1-8

DOI: 10.1186/s11671-015-0762-1

Google Scholar

[4] X. Zhang, L. Wei, X. Guo, Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: enhanced capacitive storage and cycling performance for supercapacitors. Chemical Engineering Journal. 353 (2018) 615-625

DOI: 10.1016/j.cej.2018.07.160

Google Scholar

[5] O.M. Popovych, I.M. Budzulyak, V.O. Kotsyubynsky, L.S. Yablon, O.V. Popovych, Electrochemical and electrical properties of nickel molybdate / carbon material composites. Physics and Chemistry of Solid State. 22 (2021) 481-486

DOI: 10.15330/pcss.22.3.481-486

Google Scholar

[6] O.M. Popovych, I. M. Budzulyak, V.O. Kotsyubynsky, V.M. Boychuk, R.V. Ilnytskyi, M.M. Khemii, N.Ya. Ivanichok, Ye.V. Lezun, Ultrasonic modification of nanocrystalline NiMoO4 hydrate obtained by hydrothermal method. Physics and Chemistry of Solid State. 23 (2022) 341-346

DOI: 10.15330/pcss.23.2.341-346

Google Scholar

[7] O.M. Popovych, I.M. Budzulyak, V.O. Yukhymchuk, S.I. Budzulyak, D.I. Popovych, Raman spectroscopy of nickel molybdate and its modifications. Fullerenes, Nanotubes and Carbon Nanostructures. 29 (2021) 1009-1015

DOI: 10.1080/1536383X.2021.1925253

Google Scholar

[8] T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? Journal of The Electrochemical Society. 162 (2015) A5185

DOI: 10.1149/2.0201505jes

Google Scholar

[9] N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu, D. Golberg, Y.-K. Han, D. P. Duba, True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small. 16 (2020) 2002806

DOI: 10.1002/smll.202002806

Google Scholar

[10] A. Shameem, P. Devendran, V. Siva, R. Packiaraj, N. Nallamuthu, S. Asath Bahadur, Electrochemical performance and optimization of α-NiMoO4 by different facile synthetic approach for supercapacitor application. Journal of Materials Science: Materials in Electronics. 30 (2019) 3305-3315

DOI: 10.1007/s10854-018-00603-3

Google Scholar

[11] M. Minakshi, D.R. Mitchell, A.R. Munnangi, A.J. Barlow, M. Fichtner, New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale. 10 (2018) 13277-13288

DOI: 10.1039/C8NR03824D

Google Scholar

[12] S. Motupally, C.C. Streinz, J.W. Weidner, Proton diffusion in nickel hydroxide films: measurement of the diffusion coefficient as a function of state of charge. Journal of the Electrochemical Society. 142 (1995) 1401

DOI: 10.1149/1.2048589

Google Scholar

[13] B. Senthilkumar, R.K. Selvan, Hydrothermal synthesis and electrochemical performances of 1.7 V NiMoO4⋅ xH2O|| FeMoO4 aqueous hybrid supercapacitor. Journal of colloid and interface science. 426 (2014) 280-286

DOI: 10.1016/j.jcis.2014.04.010

Google Scholar

[14] R. Ojani, J.B. Raoof, S.R.H. Zavvarmahalleh, Preparation of Ni/poly (1, 5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. Journal of Solid State Electrochemistry. 13 (2009) 1605-1611

DOI: 10.1007/s10008-008-0718-9

Google Scholar

[15] P. Oliva, J. Leonardi, J.F. Laurent C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. de Guibert, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power sources. 8 (1982) 229-255

DOI: 10.1016/0378-7753(82)80057-8

Google Scholar

[16] A. Delahaye-Vidal, M. Figlarz, Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling. Journal of applied electrochemistry. 17 (1987) 589-599

DOI: 10.1007/BF01084134

Google Scholar

[17] O.M. Hemiy, L.S. Yablon, I.M. Budzulyak, S.I. Budzulyak, O.V. Morushko, A.I. Kachmar, Electrochemical properties of nanocomposite nanoporous carbon / nickel hydroxide. Journal of Nano- and Electronic Physics. 8 (2016) 04074

DOI: 10.21272/jnep.8(4(2)).04074

Google Scholar

[18] O.M. Khemii, I.M. Budzuliak, V.O. Kotsyubynsky, L.S. Yablon, R.V. Ilnytskyi, V.M. Boychuk, O.V. Morushko, Kh.V. Bandura and M.M. Khemii, Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH)2 and its composites with carbon. Materials Science-Poland. 37 (2019) 547-553

DOI: 10.2478/msp-2019-0077

Google Scholar

[19] X.J. Han, P. Xu, C.Q. Xu, L. Zhao, Z.B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta. 50 (2005) 2763-2769

DOI: 10.1016/j.electacta.2004.11.025

Google Scholar

[20] D. Ghosh, S. Giri, C. K. Das, Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4· nH2O nanorods. Nanoscale. 5(2013) 10428-10437

DOI: 10.1039/C3NR02444J

Google Scholar

[21] H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, Rapid microwave-assisted synthesis NiMoO4· H2O nanoclusters for supercapacitors. Materials Letters. 108 (2013) 164-167

DOI: 10.1016/j.matlet.2013.06.099

Google Scholar