Removal of Congo Red from Wastewater Using ZnO/MgO Nanocomposites as Adsorbents: Equilibrium Isotherm Analyses, Kinetics and Thermodynamic Studies

Article Preview

Abstract:

One step polyacrylamide gel method was used to synthesize the ZnO/MgO adsorbents and the adsorption behavior with Congo red (CR) from wastewater was extensively investigated. Various advanced techniques were applied to confirm the ZnO/MgO adsorbents consist of Zn, C, Mg and O elements and do not contain any other impurity elements. With the increase of MgO content, the morphology of ZnO/MgO adsorbent changes from the agglomeration of large particles to evenly dispersed fine particles and then to icicle structure. Results demonstrated that the adsorption process of ZnO/MgO adsorbents was significantly affected by the change in initial dye solution pH, initial adsorbent dosage, contact time and reaction temperature. The optimum pH, adsorbent dosage, contact time and reaction temperature is 9.81, 2 g /L, 65 min and 293 K, respectively. The maximum adsorption capacity of ZnO/MgO (nZnO:nMgO = 8:2) adsorbents (295.138 mg/g) for the adsorption of CR dye was approximately double that of previous reports (125 mg/g). The adsorption equilibrium data are well fitted by the Freundlich and Langmuir isotherm models. Thermodynamic studies indicate that the adsorption process of ZnO/MgO adsorbents is an exothermic process. Based on the experimental and theoretical analysis, the adsorption mechanism for the ZnO/MgO adsorbents consisted of hydrogen bonding, n-π interaction and electrostatic interaction. The present work pioneers the potential application of ZnO/MgO adsorbents for the adsorption of CR dye and further provides experimental evidence for the synthesis of other adsorbents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-86

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl12O19 (M= Ca, Sr, Ba)-based photocatalysts boosts near ultraviolet and visible light-driven photocatalytic performance. Mater. Today Chem. 24 (2022) 100942.

DOI: 10.1016/j.mtchem.2022.100942

Google Scholar

[2] C. Cai, B. Liu, K. Liu, P. Li, J. Fu, Y. Wang, W. Li, C. Tian, Y. Kang, A. Stefancu, H. Li, C. Kao, T. Chan, Z. Lin, L. Chai, E. Cortes, M. Liu, Heteroatoms induce localization of the electric field and promote a wide potential‐window selectivity towards CO in the CO2 electroreduction, Angew. Chem. Int. Edit. (2022)

DOI: 10.1002/anie.202212640

Google Scholar

[3] M. Bilal, I. Ihsanullah, M. Younas, M.U.H. Shah, Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 278 (2021) 119510.

DOI: 10.1016/j.seppur.2021.119510

Google Scholar

[4] J. Gaálová, M. Michel, M. Bourassi, B.P. Ladewig, P. Kasal, J. Jindich, P. Izák, Nafion membranes modified by cationic cyclodextrin derivatives for enantioselective separation. Sep. Purif. Technol. 266 (2021) 118538.

DOI: 10.1016/j.seppur.2021.118538

Google Scholar

[5] W. Chen, J. Huang, Z.C. He, X. Ji, Y.F. Zhang, H.L. Sun, K. Wang, Z.W. Su, Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Sep. Purif. Technol. 277 (2021) 119461.

DOI: 10.1016/j.seppur.2021.119461

Google Scholar

[6] L. Ruan, Y. Jia, J. Guan, B. Xue, S. Huang, Z. Wu, X. Cui, Highly piezocatalysis of metal-organic frameworks material ZIF-8 under vibration. Sep. Purif. Technol. 283 (2021) 120159.

DOI: 10.1016/j.seppur.2021.120159

Google Scholar

[7] T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, H. Yang, Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst. Appl. Surf. Sci. 566 (2021) 150669.

DOI: 10.1016/j.apsusc.2021.150669

Google Scholar

[8] M. Forouzesh, A. Ebadi, F. Abedini, Thermocatalytic persulfate activation for metronidazole removal in the continuous operation. Sep. Purif. Technol. 258, (2021) 118055.

DOI: 10.1016/j.seppur.2020.118055

Google Scholar

[9] Z. He, H. Yang, J. Su, Y. Xia, X. Fu, L. Kang, L. Wang, Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxaci, Fuel 294 (2021) 120399.

DOI: 10.1016/j.fuel.2021.120399

Google Scholar

[10] S. Wang, X. Chen, L. Fang, H. Gao, M. Han, X. Chen, Y. Xia, L. Xie, H. Yang, Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis, Nuclear Analysis 1 (2022) 100026.

DOI: 10.1016/j.nucana.2022.100026

Google Scholar

[11] T. Cheng, H. Gao, G. Liu, Z. Pu, S. Wang, Z. Yi, X. Wu, H. Yang, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions, Colloid. Surf. A 633 (2022) 127918.

DOI: 10.1016/j.colsurfa.2021.127918

Google Scholar

[12] J. He, T. Qian, C. Cai, X. Xiang, S. Li, X. Zu, Nickel-based selenides with a fractal structure as an excellent bifunctional electrocatalyst for water splitting, Nanomaterials 12 (2022) 281.

DOI: 10.3390/nano12020281

Google Scholar

[13] M. Han, S. Wang, X. Chen, H. Liu, H. Gao, X. Zhao, F. Wang, H. Yang, Z. Yi, L. Fang, Spinel CuB2O4 (B= Fe, Cr, and Al) oxides for selective adsorption of Congo red and photocatalytic removal of antibiotics. ACS Appl. Nano Mater. 5 (2022) 11194-11207.

DOI: 10.1021/acsanm.2c02349

Google Scholar

[14] L. Li, H. Gao, Z. Yi, S. Wang, X. Wu, R. Li, H. Yang, Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures, Colloid. Surf. A 644 (2022) 128758.

DOI: 10.1016/j.colsurfa.2022.128758

Google Scholar

[15] H.A. Ahsaine, M. Zbair, Z. Anfar, Y. Naciri, N.E. Alem, M. Ezahri, Cationic dyes adsorption onto high surface area 'almond shell' activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Mater. Today Chem. 8 (2018) 121-132.

DOI: 10.1016/j.mtchem.2018.03.004

Google Scholar

[16] S. Wang, S. Tang, H. Gao, X. Chen, H. Liu, C. Yu, Z. Yin, X. Zhao, X. Pan, H. Yang, Microstructure, optical, photoluminescence properties and the intrinsic mechanism of photoluminescence and photocatalysis for the BaTiO3, BaTiO3/TiO2 and BaTiO3/TiO2/CeO2 smart composites. Opt. Mater. 118 (2021) 111273.

DOI: 10.1016/j.optmat.2021.111273

Google Scholar

[17] W. Meng, Z. Ma, J. Shu, B. Li, P. Su, R. Wang, M. Chen, Z. Liu, K. Ai, Efficient adsorption of methylene blue from aqueous solution by hydrothermal chemical modification phosphorus ore flotation tailings. Sep. Purif. Technol. 281 (2022) 119496.

DOI: 10.1016/j.seppur.2021.119496

Google Scholar

[18] C. Chen, J. Ma, Y. Wang, Z. Yi, S. Wang, H. Gao, X. Wu, G. Liu, H. Yang, CTAB-assisted synthesis of Bi2MoO6 hierarchical microsphere and its application as a novel efficient and recyclable adsorbent in removing organic pollutants. Colloid. Surf. A 656 (2023) 130441.

DOI: 10.1016/j.colsurfa.2022.130441

Google Scholar

[19] Y. Zheng, J. Liu, B. Cheng, W. You, W. Ho, H. Tang, Hierarchical porous Al2O3@ ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Appl. Surf. Sci. 473 (2019) 251-260.

DOI: 10.1016/j.apsusc.2018.12.106

Google Scholar

[20] M. Spitler, M. Calvin, Adsorption and oxidation of rhodamine B at ZnO electrodes. J. Chem. Phys. 67(11) (1977) 5193-5200.

DOI: 10.1063/1.434695

Google Scholar

[21] O.A. Oyewo, A. Adeniyi, B.B. Sithole, M.S. Onyango, Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of methylene blue dye. ACS Omega 5 (2020) 18798-18807.

DOI: 10.1021/acsomega.0c01924

Google Scholar

[22] S. Liu, W. Wang, Y. Cheng, L. Yao, H. Han, T. Zhu, Y. Liang, J. Fu, Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. J. Colloid Interf. Sci. 574 (2020) 410-420.

DOI: 10.1016/j.jcis.2020.04.057

Google Scholar

[23] P.P. Rath, S.S. Behera, B. Priyadarshini, S.R. Panda, D. Mandal, T. Sahoo, P.K. Parhi, Influence of Mg doping on ZnO NPs for enhanced adsorption activity of Congo red dye. Appl. Surf. Sci. 491 (2019) 256-266.

DOI: 10.1016/j.apsusc.2019.06.120

Google Scholar

[24] G.C. Lakshmi, S. Ananda, R. Somashekar, C. Ranganathaiah, Synthesis of ZnO/MgO nanocomposites by electrochemical method for photocatalytic degradation kinetics of eosin yellow dye. Int. J. NanoSci. Nanotechnol. 3 (2012) 47-63.

Google Scholar

[25] X. Su, G. Bai, J. Zhang, J. Zhou, Y. Jia, Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method. Appl. Surf. Sci. 442 (2018) 12-19.

DOI: 10.1016/j.apsusc.2018.01.316

Google Scholar

[26] S. Wang, H. Gao, G. Sun, J. Zhang, Y. Xia, C. Xie, G. Yang, Y. Wang, L. Fang, M-type barium hexaferrite nanoparticles synthesized by γ-ray irradiation assisted polyacrylamide gel method and its optical, magnetic and supercapacitive performances. J. Clust. Sci. 32 (2021) 569-578.

DOI: 10.1007/s10876-020-01815-6

Google Scholar

[27] Z. He, J. Su, Y. Xia, B. Tang, Fabrication and photocatalytic performance of Bi24O31Br10 nanosphere by a polyacrylamide gel method. Micro Nano Lett. 15 (2020) 499-502.

DOI: 10.1049/mnl.2020.0016

Google Scholar

[28] S. Wang, S. Tang, H. Gao, L. Fang, Q. Hu, G. Sun, C. Yu, H. Liu, X. Pan, Modified polyacrylamide gel synthesis of CeO2 nanoparticles by using cerium sulfate as metal source and its optical and photoluminescence properties. J. Mater. Sci. Mater. El. 32 (2021) 10820-10834.

DOI: 10.1007/s10854-021-05740-w

Google Scholar

[29] X. Chen, S. Wang, H. Gao, H. Yang, L. Fang, X. Chen, S. Tang, C. Yu, D. Li, A novel lead hexagonal ferrite (PbFe12O19) magnetic separation catalyst with excellent ultrasonic catalytic activity. J. of Sol-Gel Sci. Technol. (2022) 1-16

DOI: 10.1007/s10971-022-05937-3

Google Scholar

[30] S. Wang, X. Chen, H. Gao, L. Fang, Q. Hu, A. Sun, S. Tang, H. Liu, C. Yu, X. Pan, A comparative study on the phase structure, optical and NIR reflectivity of BaFe12O19 nano-pigments by the traditional and modified polyacrylamide gel method. J. Nano Res. 67 (2021) 1-14.

DOI: 10.4028/www.scientific.net/jnanor.67.1

Google Scholar

[31] S.F. Wang, H.B. Lv, X.S. Zhou, Y.Q. Fu, X.T. Zu, Magnetic nanocomposites through polyacrylamide gel route. Nanosci. Nanotech. Let. 6 (2014) 758-771.

DOI: 10.1166/nnl.2014.1796

Google Scholar

[32] F. Ye, X. Jiang, X. Huang, X. Nie, C. Chen, Cheng H, Zeng R, High sintering activity NaNbO3 powder synthesis via the polyacrylamide gel method and fabrication of a NaNbO3 ceramic at lower temperature. J. Mater. Res. Technol. 15 (2021) 5833-5840.

DOI: 10.1016/j.jmrt.2021.11.030

Google Scholar

[33] H. Gao, H. Yang, S. Wang, X. Zhao, Optical and electrochemical properties of perovskite type MAlO3 (M= Y, La, Ce) pigments synthesized by a gamma-ray irradiation assisted polyacrylamide gel route. Ceram. Int. 44 (2018) 14754-14766.

DOI: 10.1016/j.ceramint.2018.05.105

Google Scholar

[34] Z. He, H. Yang, J. Su, Y. Xia, X. Fu, L. Kang, L. Wang, M. Wu, Polyacrylamide gel synthesis and photocatalytic performance of CuCo2O4 nanoparticles. Mater. Lett. 288 (2021) 129375.

DOI: 10.1016/j.matlet.2021.129375

Google Scholar

[35] K. Huang, B. Xie, X. Chen, Y. Zhang, T. Mo, H. Ji, Q. He, P. Yu, Effect of excess Ca2+ on the formation of CaZrO3 powders via polyacrylamide gel method. Mater. Express 9 (2019) 310-318.

DOI: 10.1166/mex.2019.1504

Google Scholar

[36] S. Wang, H. Gao, C. Chen, Y. Wei, X. Zhao, Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1-xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. J. Sol Gel Sci. Techn. 92 (2019) 186-199.

DOI: 10.1007/s10971-019-05062-8

Google Scholar

[37] M. Ahmadyari-Sharamin, S.A. Hassanzadeh-Tabrizi, Polyacrylamide gel synthesis, characterization, and optical properties of Co1-xNixCr2O4 spinel nanopigment. J. Sol -Gel Sci. Techn. 99 (2021) 534-545.

DOI: 10.1007/s10971-021-05590-2

Google Scholar

[38] R. Sankaranarayanan, S. Shailajha, M.K. Mubina, C.P. Anilkumar, Effect of Zn2+ ions on structural, optical, magnetic, and impedance response of Znx@Ni1–xFe2O4 core materials prepared by two-step polyacrylamide gel method. J. Mater. Sci. Mater. El. 31 (2020) 11833-11846.

DOI: 10.1007/s10854-020-03737-5

Google Scholar

[39] S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, X. Zhao, G. Sun, D. Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods. J. Phys. Chem. Solids. 150 (2021) 109891.

DOI: 10.1016/j.jpcs.2020.109891

Google Scholar

[40] S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, Polyacrylamide gel synthesis and sintering of Mg2SiO4: Eu3+ nanopowder. Ceram. Int. 39(6) (2013) 6313-6317.

DOI: 10.1016/j.ceramint.2013.01.056

Google Scholar

[41] J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, Z. Yi, Y. Wang, Y. Wei, Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater. Today Chem. 19 (2021) 100390.

DOI: 10.1016/j.mtchem.2020.100390

Google Scholar

[42] S. Wang, M. Li, Z. Yin, H. Gao, H. Liu, H. Yang, L. Fang, V. Jagadeesha Angadi, L. Hu, D, Li, Skillfully grafted C-O functional group to enhance the adsorption/photocatalytic mechanism of YMnO3/MgAl2O4 heterojunction photocatalysts, Adv. Powder Technol. 33 (2022) 103771.

DOI: 10.1016/j.apt.2022.103771

Google Scholar

[43] X. Zhao, H. Yang, P. Wu, X. Huang, X. Wang, The preparation of MgO nanopowders synthesized via an improved polyacrylamide gel method, RSC Adv. 9 (2019) 14893-14898.

DOI: 10.1039/c8ra10292a

Google Scholar

[44] Y. Wu, J. Yun, L. Wang, X. Yang, Structure and optical properties of Mg‐doped ZnO nanoparticles by polyacrylamide method, Cryst. Res. Technol. 48 (2013) 145-152.

DOI: 10.1002/crat.201200438

Google Scholar

[45] X. Yu, Y. Wu, B. Dong, Z. Dong, X. Yang, Enhanced solar light photocatalytic properties of ZnO nanocrystals by Mg-doping via polyacrylamide polymer method, J. Photochem. Photobio. A: Chem. 356 (2018) 681-688.

DOI: 10.1016/j.jphotochem.2016.05.006

Google Scholar

[46] Z.B. Shao, C.Y. Wang, S.D. Geng, X. D. Sun, S.J. Geng, Fabrication of nanometer-sized zinc oxide at low decomposing temperature, J. Mater. Proc. Technol. 178 (2006) 247-250.

DOI: 10.1016/j.jmatprotec.2006.03.174

Google Scholar

[47] H. Liu, S. Wang, H. Gao, H. Yang, F. Wang, X. Chen, L. Fang, S. Tang, Z. Yi, D. Li, A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Sep. Purif. Technol. 281 (2022) 119855.

DOI: 10.1016/j.seppur.2021.119855

Google Scholar

[48] V. Revathi, K. Karthik, Microwave assisted CdO-ZnO-MgO nanocomposite and its photocatalytic and antibacterial studies. J. Mater. Sci. Mater. El. 29 (2018) 18519-18530.

DOI: 10.1007/s10854-018-9968-1

Google Scholar

[49] H.J. Gao, S.F. Wang, L.M. Fang, G.A. Sun, X.P. Chen, S.N. Tang, H. Yang, G.Z. Sun, D.F. Li, Nanostructured spinel-type M (M= Mg, Co, Zn) Cr2O4 oxides: Novel adsorbents for aqueous Congo red removal. Mater. Today Chem. 22 (2021) 100593.

DOI: 10.1016/j.mtchem.2021.100593

Google Scholar

[50] A. Nigam, S. Saini, A.K. Rai, S.J. Pawar, Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications. Ceram. Int. 47(14) (2021) 19515-19525.

DOI: 10.1016/j.ceramint.2021.03.289

Google Scholar

[51] C.P. Marshall, E.J. Javaux, A.H. Knoll, M.R. Walter, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of proterozoic acritarchs: A new approach to palaeobiology. Precambrian Res. 138(3-4) (2005) 208-224.

DOI: 10.1016/j.precamres.2005.05.006

Google Scholar

[52] L. Kumari, W.Z. Li, C.H. Vannoy, R.M. Leblanc, D.Z. Wang, Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram. Int. 35(8) (2009) 3355-3364.

DOI: 10.1016/j.ceramint.2009.05.035

Google Scholar

[53] T. Selvamani, T. Yagyu, S. Kawasaki, I. Mukhopadhyay, Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity. Catal. Commun. 11(6) (2010) 537-541.

DOI: 10.1016/j.catcom.2009.12.014

Google Scholar

[54] S.M. Borghei, S. Kamali, M.H. Shakib, A. Bazrafshan, M. Ghoranneviss, Filament temperature dependence of the nano-size MgO particles prepared by the HWCVD technique. J. Fusion Energy 30 (2011) 433-436.

DOI: 10.1007/s10894-011-9394-3

Google Scholar

[55] N.M.A. Hadia, H.A.H. Mohamed, Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mat. Sci. Semicon. Proc. 29 (2015) 238-244.

DOI: 10.1016/j.mssp.2014.03.049

Google Scholar

[56] Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, E. Ilik, G. Kilic, FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. J. Mater. Sci. Mater. Electron. 31 (2020) 9099-9113.

DOI: 10.1007/s10854-020-03440-5

Google Scholar

[57] S.F. Wang, C. Zhang, G. Sun, B. Chen, X. Xiang, H. Wang, L. Fang, Q. Tian, Q. Ding, X. Zu, Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material. Opt. Mater. 36(2) (2013) 482-488.

DOI: 10.1016/j.optmat.2013.10.014

Google Scholar

[58] N.K. Gupta, J. Bae, S. Kim, K.S. Kim, Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism. Chemosphere 274 (2021) 129789.

DOI: 10.1016/j.chemosphere.2021.129789

Google Scholar

[59] X. Li, J. Zhao, X. Bai, Y. Yang, Q. Ma, X. Tang, Y. Wang, Y. Zhu, Antibacterial property improvement of nano-MgO prepared by lithium doping under nitrogen calcination. Ceram. Int. 47(8) (2021) 11807-11813.

DOI: 10.1016/j.ceramint.2020.12.187

Google Scholar

[60] S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N–O and C–O functional groups decorating spinel type magnesium aluminate. CrystEngComm 21 (2019) 263-277.

DOI: 10.1039/c8ce01474d

Google Scholar

[61] K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. E. 74 (2017) 25-48.

DOI: 10.1016/j.jtice.2017.01.024

Google Scholar

[62] A. Akhtar, Z. Aslam, A. Asghar, M.M. Bello, A.A.A. Raman, Electrocoagulation of Congo red dye-containing wastewater: Optimization of operational parameters and process mechanism. J. Environ. Chem. Eng. 8(5) (2020) 104055.

DOI: 10.1016/j.jece.2020.104055

Google Scholar

[63] A.A. Telke, S.M. Joshi, S.U. Jadhav, D.P. Tamboli, S.P. Govindwar, Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium pseudomonas sp. SU-EBT. Biodegradation 21 (2010) 83-296.

DOI: 10.1007/s10532-009-9300-0

Google Scholar

[64] B.H. Hameed, Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater. 162(2-3) (2009) 939-944.

DOI: 10.1016/j.jhazmat.2008.05.120

Google Scholar

[65] L. Spessato, A.L. Cazetta, S. Melo, O. Pezoti, J. Tami, A. Ronix, J.M. Fonseca, A.F. Martins, T.L. Silva, V.C. Almeida, Synthesis of superparamagnetic activated carbon for paracetamol removal from aqueous solution. J. Mol. Liq. 300 (2020) 112282.

DOI: 10.1016/j.molliq.2019.112282

Google Scholar

[66] M. Akgül, A. Karabakan, Promoted dye adsorption performance over desilicated natural zeolite. Micropor. Mesopor. Mater. 145(1-3) (2011) 157-164.

DOI: 10.1016/j.micromeso.2011.05.012

Google Scholar

[67] L. Spessato, V.A. Duarte, P. Viero, H. Zanella, J.M. Fonseca, P.A. Arroyo, V.C. Almeida, Optimization of sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous adsorption of rhodamine B and metformin. J. Hazard. Mater. 411 (2021) 125166.

DOI: 10.1016/j.jhazmat.2021.125166

Google Scholar

[68] M.K. Paliwal, Y.K. Sonia, S.K. Meher, Hierarchically structured β-Ni(OH)2 clusters: A uniquely efficient aqueous phase pollutant adsorbent for multiple anionic dyes and heavy metal ions. Mater. Today Chem. 22 (2021) 100551.

DOI: 10.1016/j.mtchem.2021.100551

Google Scholar

[69] J. Yan, K. Li, A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep. Purif. Technol. 277 (2021) 119469.

DOI: 10.1016/j.seppur.2021.119469

Google Scholar

[70] D. Zhou, A.A. Keller, Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 44(9) (2010) 2948-2956.

DOI: 10.1016/j.watres.2010.02.025

Google Scholar

[71] D. Kamel, A. Sihem, C. Halima, S. Tahar, Decolourization process of an azoique dye (Congo red) by photochemical methods in homogeneous medium. Desalination 247(1-3) (2009) 412-422.

DOI: 10.1016/j.desal.2009.02.052

Google Scholar

[72] R. Kumar, J. Rashid, M.A. Barakat, Synthesis and characterization of a starch–AlOOH–FeS2 nanocomposite for the adsorption of Congo red dye from aqueous solution. RSC Adv. 4 (2014) 38334-38340.

DOI: 10.1039/c4ra05183a

Google Scholar

[73] I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere 61(4) (2005) 492-501.

DOI: 10.1016/j.chemosphere.2005.03.065

Google Scholar

[74] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273 (2019) 425-434.

DOI: 10.1016/j.molliq.2018.10.048

Google Scholar

[75] F.M. Machado, C.P. Bergmann, E.C. Lima, B. Royer, F.E. Souza, I.M. Jauris, T. Calvete, S.B. Fagan, Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys. Chem. Chem. Phys. 14 (2012) 11139-11153.

DOI: 10.1039/c2cp41475a

Google Scholar

[76] R. Ahmad, R. Kumar, Adsorptive removal of Congo red dye from aqueous solution using bael shell carbon. Appl. Surf. Sci. 257(5) (2010) 1628-1633.

DOI: 10.1016/j.apsusc.2010.08.111

Google Scholar

[77] N.T. Nguyen, N.T. Nguyen, V.A. Nguyen, In situ synthesis and characterization of ZnO/chitosan nanocomposite as an adsorbent for removal of Congo Red from aqueous solution. Adv. Polym. Tech. 2020 (2020) 3892694.

DOI: 10.1155/2020/3892694

Google Scholar

[78] P. Bhatia, M. Nath, Green synthesis of p-NiO/n-ZnO nanocomposites: Excellent adsorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater. J. Water Process Eng. 33 (2020) 101017.

DOI: 10.1016/j.jwpe.2019.101017

Google Scholar

[79] J. Zhang, X. Yan, M. Hu, X. Hu, M. Zhou, Adsorption of Congo red from aqueous solution using ZnO-modified SiO2 nanospheres with rough surfaces. J. Mol. Liq. 249 (2018) 772-778.

DOI: 10.1016/j.molliq.2017.11.109

Google Scholar

[80] X. Yan, X. Zhang, Q. Li, Preparation and characterization of CS/β-CD/Nano-ZnO composite porous membrane optimized by Box-Behnken for the adsorption of Congo red. Environ. Sci. Pollut. R. 25 (2018) 22244-22258.

DOI: 10.1007/s11356-018-2110-3

Google Scholar

[81] R. Appiah-Ntiamoah, A.F. Baye, B.T. Gadisa, M.W. Abebe, H. Kim, In-situ prepared ZnO-ZnFe2O4 with 1-D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment. J. Hazard. Mater. 373 (2019) 459-467.

DOI: 10.1016/j.jhazmat.2019.03.108

Google Scholar

[82] H.Y. Zhu, R. Jiang, Y.Q. Fu, R.R. Li, J. Yao, S.T. Jiang, Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl. Surf. Sci. 369 (2016) 1-10.

DOI: 10.1016/j.apsusc.2016.02.025

Google Scholar

[83] T.K. Murthy, B.S. Gowrishankar, R.H. Krishna, M.N. Chandraprabha, R.S. Rao, Influence of fuel nature on dye adsorption efficiency of solution combustion derived zinc oxide nanoparticles: A comparative study. Mater. Res. Express 6 (2019) 055512.

DOI: 10.1088/2053-1591/aafe3f

Google Scholar

[84] H.N. Tran, F. Tomul, N.T.H. Ha, D.T. Nguyen, E.C. Lima, G.T. Le, S.H. Woo, Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 394 (2020) 122255.

DOI: 10.1016/j.jhazmat.2020.122255

Google Scholar

[85] M. Sharma, K. Chaudhary, M. Kumari, P. Yadav, K. Sachdev, V.C. Janu, R. Gupta, Highly efficient, economic, and recyclable glutathione decorated magnetically separable nanocomposite for uranium (VI) adsorption from aqueous solution. Mater. Today Chem. 18 (2020) 100379.

DOI: 10.1016/j.mtchem.2020.100379

Google Scholar

[86] S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V. Jagadeesha Angadi, Z. Yi, D. Li, Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight. Appl. Surf. Sci. 608 (2023) 154977.

DOI: 10.1016/j.apsusc.2022.154977

Google Scholar

[87] R. Haounati, H. Ouachtak, R.E. Haouti, S. Akhouairi, F. Largo, F. Akbal, A. Benlhachemi, A. Jada, A.A. Addi, Elaboration and properties of a new SDS/CTAB@ Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Sep. Purif. Technol. 255 (2021) 117335.

DOI: 10.1016/j.seppur.2020.117335

Google Scholar

[88] F.A. Razmi, N. Ngadi, S. Wong, I.M. Inuwa, L.A. Opotu, Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent. J. Clean. Prod. 231 (2019) 98-109.

DOI: 10.1016/j.jclepro.2019.05.228

Google Scholar