Structural, Optical and Ionic Properties of PVA Capped CuS Quantum Dots

Article Preview

Abstract:

Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-133

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zou, J. Zhang, B. Zhang, P. Zhao, X. Xu, J. Chen, K. Huang, Synthesis and characterization of copper sulfide nanocrystal with three-dimensional flower-shape, J. Mater. Sci.42 (2007) 9181-9186.

DOI: 10.1007/s10853-007-1923-0

Google Scholar

[2] K.V. Singh, A. A. Martinez-Morales, G.T. Senthil Andavan , K.N. Bozilov and M. Ozkan, A simple way synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electro deposition ,Chem. Mater. 19 (2007) 2446-2454.

DOI: 10.1021/cm0629356

Google Scholar

[3] M. Annie Freeda, N. Rode Madhav, C.K. Mahadevan,S. Ramalingom, Synthesis and characterization of nano-structured materials CuS (Covellite) for their applications,Nanotechnol. Nanosci. 1(1) (2010) 04-07.

Google Scholar

[4] L.A. Isac, A. Duta, A. Kriza, I.A. Enesca, M. Nanu, The growth of CuS thin films by spray pyrolysis, J. of Phy. : Conference series 61(2007) 477-481.

DOI: 10.1088/1742-6596/61/1/096

Google Scholar

[5] Noor ul Ain, Jamal Abdul Nasir, Zaibunisa Khan, Ian S. Butlerb, Ziaur Rehman, Copper sulfide nanostructures: synthesis and biological applications RSC Adv. 12 (2022) 7550–7567.

DOI: 10.1039/d1ra08414c

Google Scholar

[6] A. Phuruangrat, T.Thongtem, S.Thongtem, Characterization of copper sulfide hexananoplates and nanoparticles synthesized by a sonochemical method, Chalcogenide Lett.8 (4) (2011)291-295.

DOI: 10.1016/j.matlet.2009.11.060

Google Scholar

[7] I. Savarimuthu, M.J.A.M. Susairaj, CuS Nanoparticles Trigger Sulfite for Fast Degradation of Organic Dyes under Dark Conditions, ACS Omega 7 (2022) 4140-4149.

DOI: 10.1021/acsomega.1c05697

Google Scholar

[8] Y. Fan, Y. Li, X. Han, X. Wu, L. Zhang, Q. Wang, Facile Preparation of CuS Nanoparticles from the Interfaces of Hydrophobic Ionic Liquids and Water, Molecules24 (3776) (2019) 1-11.

DOI: 10.3390/molecules24203776

Google Scholar

[9] W. Liang and M.H. Whangbo, Conductivity anisotropy and structural phase transition in covellite CuS, Solid State Commun. 85 (5) (1993) 405-408.

DOI: 10.1016/0038-1098(93)90689-k

Google Scholar

[10] K. Xu, W. Ding, Controlled synthesis of spherical CuS hierarchical structures, Mater. Lett. 62 (2008) 4437-4439.

DOI: 10.1016/j.matlet.2008.07.040

Google Scholar

[11] C. Xu, L. Wang, D. Zou, T. Ying, Ionic liquid-assisted synthesis of hierarchical CuS nanostructures at room temperature, Mater. Lett. 62 (2008) 3181-3184.

DOI: 10.1016/j.matlet.2008.02.014

Google Scholar

[12] I. Mitra, N. Manna, J.S. Manna, M.K. Mitra, Synthesis of Chlorophyll entrapped red luminescent silica nanoparticles for bioimaging application, Procedia Materials Science 6 (2004) 770-774.

DOI: 10.1016/j.mspro.2014.07.093

Google Scholar

[13] R.R. Gainov, A.V. Dooglav, I.N. Pen'kov, I.R. Mukhamedshin, N.N. Mozgova, I.A. Evlampiev, I.A. Bryzgalov, Phase transition and anomalous electronic behavior in the layered superconductor CuS probed by NQR. Phys. Rev. B 79 (075115) (2009) 1-9.

DOI: 10.1103/physrevb.79.075115

Google Scholar

[14] U. Shamraiz, R.A. Hussain, A. Badshah, Fabrication and applications of copper sulphide (CuS) nanostructures, J. Solid State Chem.238 (2016) 25-40.

DOI: 10.1016/j.jssc.2016.02.046

Google Scholar

[15] J.P. Tailor, CuS-Single Crystals,Thin Films, Nanoparticles and their Application (thesis), Sardar Patel University, Gujarat, 2014.

Google Scholar

[16] Fayroz A. Sabah, Naser M. Ahmed, Z. Hassan, Hiba S. Rasheed, CuS P-type thin film characteristics for different copper to Sulphur molar ratios for light emitting diode application, J. Scientific Research and Development 2 (13) (2015) 95-99.

Google Scholar

[17] Y. Qin, X. Kong, D. Lei, X. Lei, Facial Grinding Method for Synthesis of High-Purity CuS Nanosheets, Ind. Eng. Chem. Res. 57 (8) (2018) 2759-2764.

DOI: 10.1021/acs.iecr.7b04616

Google Scholar

[18] X. Jiang, Yi. Xie, J. Lu, W. He, L. Zhu, Y. Qian, J. of Materials Chem. 10 (2000) 2193-2196.

Google Scholar

[19] M.S Shinde, D.R Patil, R.S Patil, Ammonia gas sensing property of nanocrystalline Cu2S thin Films, Indian Journal of Pure & Applied Physics 51 (2013) 713-716.

Google Scholar

[20] Zhuge F., Li X., Gao X., Gan X., and Zhou F., Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method, Materials Letters 63 (2009) 652-654.

DOI: 10.1016/j.matlet.2008.12.010

Google Scholar

[21] S. Dev, P. K.Kalita, P. Datta, Opto-Electronic Properties of Green Synthesized ZnS Nanostructures, Int. J. Nanosc.,16(4) (2017)1760032 -1760041.

DOI: 10.1142/s0219581x17600328

Google Scholar

[22] C. Sow, G. Mettela, G.U. Kulkarni, Shape-controlled template-driven growth of large CuS hexagonal nanoplates, Bull Mater Sci. 43:323 (2020) 1-7.

DOI: 10.1007/s12034-020-02294-1

Google Scholar

[23] K. Okamoto, S. Kawai, Electrical conduction and phase transition of copper sulfides, Japanese J. Appl. Phy. 12(8) (1973) 1130-1138.

DOI: 10.1143/jjap.12.1130

Google Scholar

[24] A. J.Shetzline, E. S. Creager, Quantifying electronic and ionic conductivity contributions in carbon/polyelectrolyte composite thin films, J. Electrochem. Soc. 161(14) (2014) H917-H923.

DOI: 10.1149/2.0621414jes

Google Scholar

[25] A. Ashour, The physical charecteristics of Cu2S/CdS thin- film solar cell, J. of Optoelctronics and Advanced Mates. 8 (4) (2006) 1447-1451.

Google Scholar

[26] S. Riyaz, A. Parveen, A. Azam, Microstructural and optical properties of CuS nanoparticles prepared by sol-gel route, Perspectives in Sc. 8 (2016) 632-635.

DOI: 10.1016/j.pisc.2016.06.041

Google Scholar

[27] V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particle, J. Theo. Appl. Phys.6 (6) (2012) 1-8.

DOI: 10.1186/2251-7235-6-6

Google Scholar

[28] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Mater. Chem. Phy.239 (2020) 1-9.

DOI: 10.1016/j.matchemphys.2019.122021

Google Scholar

[29] B. Barman, K.C. Sarma, Low temperature chemical synthesis of ZnS, Mn doped nanosized particles: Their structural, morphological and photophysical properties, Solid State Sc.109 (2020) 1-7.

DOI: 10.1016/j.solidstatesciences.2020.106404

Google Scholar

[30] K.C. Handique, P.K. Kalita, Effects of cadmium ion concentration on the optical and photo-response properties of CdSe / PVP nanocomposites for white light sensing application, Applied Phy.A Mate. Sc. & Proce. 755 (2020) 1-12.

DOI: 10.1007/s00339-020-03934-3

Google Scholar

[31] J. Zhang, Y. Zhang, K.W. Xu, V. Ji, General compliance transformation relation and applications for anisotropic hexagonal metals, Solid State Commun. 139 (2006) 87-91.

DOI: 10.1016/j.ssc.2006.05.026

Google Scholar

[32] mp-504 CuS (Hexagonal, P6_3/mmc, 194)- Materials Project https://materialsproject.org/materials/mp-504/.

Google Scholar

[33] H.T. Boey, W.L. Tan, N.H.H. Abu Bakar, M. Abu Bakar and J. Ismail, Formation and morphology of colloidal chitosan-stabilized copper sulfides, J. Phy. Sci. 18(1) (2007) 87-101.

Google Scholar

[34] Fei Li, W. Bi, Tao Kong and Q. Qin, Optical, photocatalytic properties of novel CuS nanoplate-based architectures synthesized by a solvothermal route, Cryst. Res. Technol. 44 (2009) 729-735.

DOI: 10.1002/crat.200800618

Google Scholar

[35] S.N. Sahu, K.K. Nanda, Nanostructure semiconductors: Physics and applications, PINSA67A (1) (2009) 103-130.

Google Scholar

[36] S.L. Prokopenko, G.M. Gunja, S.N. Makhno, P.P. Gorbyk, Electrophysical properties of heterostructures CuS/ZnS and PCTFE–CuS/ZnS system, Chem. Phys. Tech. Surface6 (2) (2015) 234-238.

DOI: 10.15407/hftp06.02.234

Google Scholar

[37] J.S. Cruz, S.A.M. Hernandez, F.P. Delgado, O.Z. Angel, R.C. Perez, G.T. Delgado, Optical and electrical properties of thin films of CuS nanodisks ensembles annealed in a Vacuum and their photocatalytic activity, Int. J. Photoenergy2013 (2013) 1-9.

DOI: 10.1155/2013/178017

Google Scholar

[38] I.M. Sung Soon, I.M. Hee Suk I.M., Y.K. Eun, The electrical and physical properties of CuS and CdS-polyacrylonitrile composite films prepared by using the organosol method, J. Appl. Polymer Sci. 41 (1990) 1517-1531.

DOI: 10.1002/app.1990.070410714

Google Scholar

[39] R. David, ed. (2005), Handbook of Chemistry and Physics, Internet Version, CRC Press, Boca Raton, FL.

Google Scholar

[40] S.K. Nath, P.K. Kalita, Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix, Nano-Structures Nano-Objects25 (100651) (2021) 1-9.

DOI: 10.1016/j.nanoso.2020.100651

Google Scholar