[1]
A.Kojima, K.Teshima, Y.Shirai, T.Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, (2009) 6050–6051.
DOI: 10.1021/ja809598r
Google Scholar
[2]
H.S. Kim, C.R. Lee, J.H.Im, K.B. Lee, T.Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J. Moser,et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2. (2012), 591.
DOI: 10.1038/srep00591
Google Scholar
[3]
M.M. Lee, J.Teuscher,T. Miyasaka, T.N. Murakami, H.J. Efficient Hybrid Solar Cells Based on Meso-Super structured Organometal Halide Perovskites. Science. 338, (2012), 643–647.
DOI: 10.1126/science.1228604
Google Scholar
[4]
M.Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nat. Cell Biol. 501,(2013), 395–398.
DOI: 10.1038/nature12509
Google Scholar
[5]
H.Zhou, Q.Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Interface engineering of highly efficient perovskite solar cells. Science. 345, (2014), 542–546.
DOI: 10.1126/science.1254050
Google Scholar
[6]
M.A, Green E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis,A. Ho-Baillie, Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, (2019), 3–15.
DOI: 10.1002/pip.3228
Google Scholar
[7]
J.M,Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, (2013), 1739–1743.
DOI: 10.1039/c3ee40810h
Google Scholar
[8]
K.C. Wang, J.Y. Jeng, P.S. Shen, Y.C. Chang, E.W. G. Diau, C.H..; Tsai, T.Y. Chao, H.C. Hsu, P.Y. Lin, P. Chen, et al. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 4, (2015), 4756.
DOI: 10.1038/srep04756
Google Scholar
[9]
K.T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, Nazeeruddin, M.K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, (2017), 621–627.
DOI: 10.1039/c6ee03182j
Google Scholar
[10]
M.Saliba, J.P. Correa-Baena, C.M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, A. Abate, How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures. Chem. Mater. 30, (2018), 4193–4201.
DOI: 10.1021/acs.chemmater.8b00136
Google Scholar
[11]
F. Wang, Y. Cao, C. Chen, Q. Chen, X. Wu, X. Li, T. Qin, W. Huang, Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Adv. Funct. Mater. 28, (2018), 803753.
DOI: 10.1002/adfm.201803753
Google Scholar
[12]
Y. Rong, Z. Ku, A. Mei, T. Liu,M. Xu, S. Ko, X. Li, H. Han, Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. J. Phys. Chem. Lett. 5, (2014), 2160–2164.
DOI: 10.1021/jz500833z
Google Scholar
[13]
D. Liu, J. Yang, T.L. Kelly, Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. J. Am. Chem. Soc.136, (2014), 17116–17122.
DOI: 10.1021/ja508758k
Google Scholar
[14]
Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep. 3, (2013), 3132.
DOI: 10.1038/srep03132
Google Scholar
[15]
N. G. Park, et al., Towards stable and commercially available perovskite solar cells, Nature Energy. 1 (11) (2016) 16152.
Google Scholar
[16]
M.A. Green, et al., Solar cell efficiency tables (version 50), Prog. Photovoltaics Res.Appl. 25 (7) (2017) 668–676.
Google Scholar
[17]
M. Lv , J. Zhu, Y. Huang, Y. Li, Z. Shao , Y. Xu et al, , Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells, ACS Appl. Mater. Interfaces .7, (2015) 17482.
DOI: 10.1021/acsami.5b05104
Google Scholar
[18]
J Zhang and T. Pauporté, Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3PbI3 for Perovskite Solar Cell Application, J. Phys. Chem. C. 119, (2015) 14919.
DOI: 10.1021/acs.jpcc.5b02984
Google Scholar
[19]
D. Liu, M.K, Gangishetty and T.L. Kelly , Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells, J. Mater. Chem. A, 2 (2014), 19873.
DOI: 10.1039/c4ta02637c
Google Scholar
[20]
G.S. Han, H.S. Chung, B.J. Kim, D.H. Kim, J.W. Lee, B.S. Swain et al , Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films, J. Mater. Chem. A. 3, (2015) 9160.
DOI: 10.1039/c4ta03684k
Google Scholar
[21]
Y.Zhao, J.Liu , X. Lu, Y. Gao, X. You and X. Xu, Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method ,Appl. Surf. Sci. (2015) 359 560.
DOI: 10.1016/j.apsusc.2015.10.132
Google Scholar
[22]
E.Guillén, F.J. Ramos, J.A. Anta and S.Ahmad, Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques, J. Phys. Chem. C.18, (2014) 22913.
DOI: 10.1021/jp5069076
Google Scholar
[23]
Q.Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu et al, Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells, ACS Appl. Mater. Interfaces .7, (2015) 28466.
DOI: 10.1021/acsami.5b09572
Google Scholar
[24]
G.S. Han Y.H. Song, Y.U. Jin, J.W. Lee N.G. Park, B.K. Kang et al, Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells, ACS Appl. Mater. Interfaces. 7,(2015) 23521.
DOI: 10.1021/acsami.5b06171
Google Scholar
[25]
Y. Luo, F. Meng, E. Zhao, Y.Z. Zheng, Y. Zhouand X. Tao, Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells,J. Power Sources, 311, (2016) 130.
DOI: 10.1016/j.jpowsour.2016.01.102
Google Scholar
[26]
N. Adhikari, A. Dubey, E.A. Gaml, B. Vaagensmith , K.M. Reza, S.A.A. Mabrouk et al Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution, Nanoscale. 8, (2016) 2693.
DOI: 10.1039/c5nr06687e
Google Scholar
[27]
H.S. Ko, J.W. Lee , N.G. Park, H.S. Kim, C.R. Lee, J.H. et al, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A. 3. (2015) 8808.
DOI: 10.1039/c5ta00658a
Google Scholar
[28]
Y.Li, Y. Zhao, Q.Chen, Y. Yang, Y. Liu , Z. Hong et al, Multifunctional fullerene derivative for interface engineering in perovskite solar cells, J. Am. Chem. Soc. 137, (2015) 15540.
DOI: 10.1021/jacs.5b10614
Google Scholar
[29]
J. Li, J. Yao, H. Xia, W. Sun, J. Liu and L. Peng, Transparent conducting oxide free backside illuminated perovskite solar cells,Appl. Phys. Lett.107, (2015) 013901.
DOI: 10.1063/1.4926363
Google Scholar
[30]
Z.Liu , T. Shi , Z. Tang , B.Sun and G. Liao , Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity, Nanoscale. 8, (2016) 7017.
DOI: 10.1039/c5nr07091k
Google Scholar
[31]
Q. Luo, Y. Zhang, C.Liu, J.Li, N.Wangand H. Lin, Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells, J. Mater. Chem. A. (2015)
DOI: 10.1039/c5ta02710a
Google Scholar
[32]
Y. Xu, L. Zhu, J. Shi, S. Lv , X. Xu , J. Xiao et al, Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method, ACS Appl. Mater. Interfaces.7, (2015) 2242.
DOI: 10.1021/am5057807
Google Scholar
[33]
Zhu L, Xiao J, Shi J, Wang J, Lv S, Xu Y et al, Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers, 2014 Nano Res. 8 1116.
DOI: 10.1007/s12274-014-0592-y
Google Scholar
[34]
J.P. Mailoa, C.D. Bailie, E.C. Johlin , E.T. Hoke, A.J. Akey , Nguyen WHet al A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Appl. Phys. Lett. 106, (2015) 121105.
DOI: 10.1063/1.4914179
Google Scholar
[35]
P.Qin, S. Tanaka, S. Ito, N. etreault, K. Manabe, H. Nishino et al, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat. Commun. 5,(2014) 1.
DOI: 10.1038/ncomms4834
Google Scholar
[36]
M. Salado, J. Idígoras, L. Calio, S. Kazim, M.K. Nazeeruddin J.A. Anta et al. Interface play between perovskite and hole selective layer on the performance and stability of perovskite solar cells, ACS Appl. Mater. Interfaces 8, (2016) 34414.
DOI: 10.1021/acsami.6b12236
Google Scholar
[37]
Z. Yao, W. Wang, H. Shen, Y. Zhang, Q. Luo , X. Yin et al, CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition, Sci. Technol. Adv. Mater. 18, (2017) 253.
DOI: 10.1080/14686996.2017.1298974
Google Scholar