Selective Intercalation of Keggin-Type Polyoxometalates into Layered Double Hydroxides

Article Preview

Abstract:

Layered double hydroxide (LDH) composites intercalated with polyoxometalates (POMs) have emerged as pivotal materials spanning various scientific domains. This study explores the intercalation of Keggin-type POM anions into LDHs and investigates the roles of electrostatic interactions, hydrogen bonding, and the superchaotropic effect in this process. In this research endeavor, the successful intercalation of 3-charge Keggin-type POMs into LDH layers has been achieved using an exfoliation-reassembly technique. A comprehensive suite of characterization techniques, including XRD, FT-IR, SEM, and TGA, was utilized to confirm structural, morphological, and thermal modifications. Selectivity experiments further verified the predominant role of the superchaotropic effect. These findings provide valuable insights into the design and functionalization of LDH-based nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-114

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Botar, A. Ellern, R. Hermann, P. Kögerler, Electronic control of spin coupling in Keplerate-type polyoxomolybdates, Angew Chem-Int Edit. 48 (2009) 9080-9083.

DOI: 10.1002/anie.200903541

Google Scholar

[2] S.S. Wang, G. Yang, Recent advances in polyoxometalate-catalyzed reactions, Chem. Rev. 115 (2015), 4893-4962.

DOI: 10.1021/cr500390v

Google Scholar

[3] H. Lv, Y.V. Geletii, C. Zhao, J.W. Vickers , G. Zhu, Z. Luo, J. Song, T. Lian, D.G. Musaev, C.L. Hill, Polyoxometalate water oxidation catalysts and the production of green fuel, Chem. Soc. Rev. 41 (2012) 7572-7589.

DOI: 10.1039/c2cs35292c

Google Scholar

[4] M. Sadakane, E. Steckhan, Electrochemical properties of polyoxometalates as electrocatalysts, Chem. Rev. 98 (1998) 219-237.

DOI: 10.1021/cr960403a

Google Scholar

[5] T. Yamase, M.T. Pope, Polyoxometalate Chemistry for Nano-Composite Design, Berlin, Germany, 2006.

Google Scholar

[6] J.T. Rhule, C.L. Hill, D.A. Judd, Polyoxometalates in Medicine, Chem. Rev. 98 (1998) 327-357.

Google Scholar

[7] A. Proust, R. Thouvenot, P. Gouzerh, Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science, Chem. Commun. 16 (2008) 1837-1852.

DOI: 10.1039/b715502f

Google Scholar

[8] J.M. Clemente-Juan, E. Coronado, A. Gaita-Arino, Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing, Chem. Soc. Rev. 41 (2012) 7464-7478.

DOI: 10.1039/c2cs35205b

Google Scholar

[9] A. Bijelic, A. Rompel, Ten good reasons for the use of the tellurium-centered Anderson–Evans polyoxotungstate in protein crystallography, Acc Chem. Res. 50 (2017) 1441-1448.

DOI: 10.1021/acs.accounts.7b00109

Google Scholar

[10] S. Omwoma, W, Chen, R, Tsunashima, Y. Song, Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications, Coordin. Chem. Rev. 258-259 (2014) 58-71.

DOI: 10.1016/j.ccr.2013.08.039

Google Scholar

[11] V. Rives, M.A. Ulibarri. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coordin. Chem. Rev. 181 (1999) 61-120.

DOI: 10.1016/s0010-8545(98)00216-1

Google Scholar

[12] F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 11 (1991) 173-301.

DOI: 10.1016/0920-5861(91)80068-k

Google Scholar

[13] P.J. Sideris, U.G. Nielsen, Z. Gan, C Grey, Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy, Science 321 (2008) 113-117.

DOI: 10.1126/science.1157581

Google Scholar

[14] T. Kwon, G.A. Tsigdions, T.J. Pinnavaia. Pillaring of layered double hydroxides (LDH's) by polyoxometalate anions, J Am. Chem. Soc. 110 (1988) 3653-3654.

DOI: 10.1021/ja00219a048

Google Scholar

[15] Z. Yao, H.N. Miras, Y. Song. Efficient concurrent removal of sulfur and nitrogen contents from complex oil mixtures by using polyoxometalate-based composite materials, Inorg. Chem. Front. 3(8) (2016) 1007-1013.

DOI: 10.1039/c6qi00130k

Google Scholar

[16] J.Wang, Y. Tian, R. C. Wang, J. L. Colón, A. Clearfield, Systematic preparation of polyoxometalate pillared layered double hydroxides via direct aqueous reaction, MRS Online Proceedings Library 233 (1991) 63-80.

DOI: 10.1557/proc-233-63

Google Scholar

[17] H. Nijis, M. de Bock, E. F. Vansant, Comparative study of the synthesis and properties of polyoxometalate pillared layered double hydroxides (POM-LDHs), J. Porous Mater. 6 (1999) 101.

Google Scholar

[18] N. Mizuno, K. Yamaguchi, K. Kamata, Molecular design of polyoxometalate-based compounds for environmentally-friendly functional group transformations: from molecular catalysts to heterogeneous, Catal. Surv. Asia 15 (2011) 68.

DOI: 10.1007/s10563-011-9111-2

Google Scholar

[19] E. Serwicka, P. Nowak, K. Bahranowski, W. Jones, F. Kooli, Insertion of electrochemically reduced Keggin anions into layered double hydroxides, J. Mater. Chem. 7 (1997) 1937.

DOI: 10.1039/a703500d

Google Scholar

[20] T. Buchecker, P. Schmid, S. Renaudineau, O. Diat, A. Proust, A. Pfitzner, P. Bauduin, Polyoxometalates in the Hofmeister series, Chem. Commun. 54 (2018) 1833.

DOI: 10.1039/c7cc09113c

Google Scholar

[21] E. Leontidis, M. Christoforou, C. Georgiou, T. Delclos, The ion–lipid battle for hydration water and interfacial sites at soft-matter interfaces, Curr. Opin. Colloid Interface 19 (2014) 2–8.

DOI: 10.1016/j.cocis.2014.02.003

Google Scholar

[22] S.Yao, C. Falaise, A. A. Ivanov, N. Leclerc, M. Hohenschutz, M. Haouas, D. Landy, M. A. Shestopalov, P. Bauduin, E. Cadot, Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg. Chem. Front. 8 (2021) 12-25.

DOI: 10.1039/d0qi00902d

Google Scholar

[23] P. Schmid, M. Hohenschutz, X. Graß, M. Witzmann, D. Touraud, O. Diat, A. Pfitzner, P. Bauduin, Counterion effect on α-Keggin polyoxometalates in water: The peculiar role of H+ on their salting-in effect and co-assembly with organics, J. Mol. Liq. 359 (2022) 119214.

DOI: 10.1016/j.molliq.2022.119214

Google Scholar

[24] P. Dullinger, D. Horinek, Solvation of nanoions in aqueous solutions. J. Am. Chem. Soc. 145 (2023) 24922-24930.

DOI: 10.26434/chemrxiv-2023-pbr32

Google Scholar

[25] Y. Zhang, J. Chen, F. Razq, C. Su, X. Hou, W. Huang, H. Zhang, Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor, Chin. J. Chem. 41 (2023) 75-82.

DOI: 10.1002/cjoc.202200463

Google Scholar

[26] N. R. Palapa, T. Taher, R. Mohadi, A. Rachmat, M. Mardiyanto, M. Miksusanti, A. Lesbani, NiAl-layered double hydroxide intercalated with Keggin polyoxometalate as adsorbent of malachite green: kinetic and equilibrium studies, Chem. Eng. Commun. 209 (2022) 684-695.

DOI: 10.1080/00986445.2021.1895773

Google Scholar

[27] T. Li, H. N. Miras, Y. Song, Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications, Catalysts 7 (2017) 260.

DOI: 10.3390/catal7090260

Google Scholar

[28] N. S. Padalkar, C. H. Cho, V. V. Magdum, Y. M. Chitare, S. P. Kulkarni, U. M. Patil, J. P. Park, J. L. Gunjakar, Self-assembled architecture of 2D layered double hydroxide pillared with 0D polyoxomolybdate anions: High-performance redox-type cathode for solid-state hybrid supercapacitor, J. Energy Storage 74 (2023) 109538.

DOI: 10.1016/j.est.2023.109538

Google Scholar

[29] P. Wang, X. Zhang, B. Zhou, F. Meng, Y. Wang, G. Wen, Recent advance of layered double hydroxides materials: Structure, properties, synthesis, modification and applications of wastewater treatment, J. Environ. Chem. Eng. 11 (2023) 111191.

DOI: 10.1016/j.jece.2023.111191

Google Scholar

[30] N. Mao, C. Zhou, D. Tong, W. Yu, C.X. Cynthia Lin, Exfoliation of layered double hydroxide solids into functional nanosheets, Appl. clay Sci. 144 (2017) 60-78.

DOI: 10.1016/j.clay.2017.04.021

Google Scholar

[31] S. V. Sadavar, N. S. Padalkar, R. B. Shinde, A. S. Patil, U. M. Patil, V. V. Magdum, Y. M. Chitare, S. P. Kulkarni, S. B. Kale, R. N. Bulakhe, D. S. Bhange, S. T. Kochuveedu, J. L. Gunjakar, Lattice engineering exfoliation-restacking route for 2D layered double hydroxide hybridized with 0D polyoxotungstate anions: Cathode for hybrid asymmetric supercapacitors, Energy Storage Mater. 48 (2022) 101-113.

DOI: 10.1016/j.ensm.2022.03.005

Google Scholar

[32] H. Ziyat, M. N. Bennani, H. Hajjaj, S. Mekdad, O. Qabaqous, Synthesis and characterization of crude hydrotalcite Mg–Al–CO3: study of thymol adsorption, Res. Chem. Intermed. 44 (2018) 4163-4177.

DOI: 10.1007/s11164-018-3361-9

Google Scholar

[33] D. S. Rana, S. Kalia, R. Kumar, N. Thakur, R. K. Singh, D. Singh, Two-dimensional layered reduced graphene oxide-tungsten disulphide nanocomposite for highly sensitive and selective determination of para nitrophenol,Environ. Nanotechnol. Monit. Manag. 18 (2022) 100724.

DOI: 10.1016/j.enmm.2022.100724

Google Scholar

[34] L. Zhang, G. Jia, C. Ma, M. Jia, T. Li, L. Ni, G. Diao, Polyoxometalate-intercalated tremella-like CoNi-LDH nanocomposites for electrocatalytic nitrite–ammonia conversion, Inorg. Chem. 63 (2024) 6787-6797.

DOI: 10.1021/acs.inorgchem.4c00130

Google Scholar

[35] A. M. Cardinale, S. V. Ciprioti, M. Fortunato, M. Catauro, Thermal behavior and antibacterial studies of a carbonate Mg–Al-based layered double hydroxide (LDH) for in vivo uses, J. Therm. Anal. Calorim. 148 (2023) 1523-1532.

DOI: 10.1007/s10973-022-11334-3

Google Scholar

[36] E. S. Seliverstov, A. S. Pisarenko, M. N. Yapryntsev, O. E. Lebedeva, Optimal synthetic route for obtaining Co/In layered double hydroxide, Ceram. Int. 50 (2024) 56019-56024.

DOI: 10.1016/j.ceramint.2024.11.024

Google Scholar

[37] S. Wang, M. Luo, Z. Yang, Z. Zhang, W. Yang, Z. Li, X. Cui, L. Xia, C. Shao, Bimetallic Cu-Co catalyst derived from in-situ grown CuCoAl-LDHs on rGO for alcohols synthesis from syngas, Fuel 381 (2025) 133735.

DOI: 10.1016/j.fuel.2024.133735

Google Scholar